
Bluetit
D-Bus controlled system daemon providing full connectivity to

AirVPN and OpenVPN servers

System Architecture and D-Bus Interface Specifications

Developer’s Reference Manual

Abstract
AirVPN–SUITE is a collection of applications, designed and developed by AirVPN, providing VPN con-
nectivity both to AirVPN servers and to generic OpenVPN systems. The core component of the Suite is
Bluetit, a lightweight D-Bus controlled system daemon and providing VPN connectivity through Open-
VPN 3 AirVPN, a fork from the original OpenVPN 3 branch.

Bluetit exposes a D-Bus interface which can be used by client applications in order to control the
daemon and also providing full interaction and connectivity with the whole AirVPN infrastructure.

Document Version: 1.0 2021-08-03
Revision: 1
Bluetit Version: 1.1.0
Release Date: 3 August 2021
Author: promind
Draft Reviser: pj

Typeset with LATEX2ε using Latin Modern
font family and based on Donald Knuth’s
Computer Modern font family created with
METAFONT

Document released under the Creative Com-
mons Attribution-NonCommercial-ShareAlike
4.0 License – CC BY-NC-SA 4.0 International
https://creativecommons.org/licenses/by-nc-sa/4.0/

https://creativecommons.org/licenses/by-nc-sa/4.0/

Contents

Introduction 9

1 Bluetit System Architecture 11
1.1 Bluetit Components . 12

1.1.1 D-Bus Layer . 12
1.1.2 Options and Command Manager . 13
1.1.3 OpenVPN3 Service . 14
1.1.4 AirVPN Manager . 15
1.1.5 Network Lock and DNS Manager . 15
1.1.6 Logger . 16

1.2 Bluetit Sessions . 17
1.2.1 Internal Session . 18
1.2.2 Synchronous Client Session . 18
1.2.3 Concurrent Client Session . 19

1.3 Starting a Generic Session . 19
1.3.1 Starting an OpenVPN Connection . 19

1.4 Starting an AirVPN Session . 20
1.4.1 AirVPN Options and Settings . 20
1.4.2 Login to AirVPN Infrastructure . 20
1.4.3 Starting a Connection to an AirVPN Server . 21

1.4.3.1 Starting a Quick Connection . 22
1.4.3.2 Starting a Connection to a Specific Server 22
1.4.3.3 Starting a Connection to a Specific Country 23

1.4.4 AirVPN Logout . 23

2 The DBusConnectorException Class 25
2.1 Public Methods . 25

2.1.1 DBusConnectorException() . 25
2.1.2 ∼DBusConnectorException() . 25
2.1.3 what() . 25

3 The DBusResponse Class 27
3.1 Public Types . 28

3.1.1 Item . 28
3.1.2 ItemIterator . 28

3.1.2.1 begin() . 28
3.1.2.2 end() . 28

3.1.3 Iterator . 29
3.1.3.1 begin() . 29
3.1.3.2 end() . 30

3.2 Public Methods . 30
3.2.1 DBusResponse() . 30
3.2.2 ∼DBusResponse() . 31
3.2.3 clear() . 31
3.2.4 setResponse() . 31
3.2.5 getResponse() . 32
3.2.6 add() . 32
3.2.7 addToItem() . 33
3.2.8 getItem() . 33

3

3.2.9 rows() . 34
3.2.10 items() . 34
3.2.11 getItemValue() . 35
3.2.12 itemKey() . 35
3.2.13 itemValue() . 36
3.2.14 fromString() . 36
3.2.15 toString() . 37

4 The DBusConnector Class 39
4.1 Character Encoding and Messages . 39
4.2 Public Methods . 41

4.2.1 DBusConnector() . 41
4.2.2 ∼DBusConnector() . 42
4.2.3 readWriteDispatch() . 43
4.2.4 popMessage() . 43
4.2.5 isMethod() . 44
4.2.6 callMethod() . 45
4.2.7 callMethodWithReply() . 46
4.2.8 replyToMessage() . 47
4.2.9 getArgs() . 48
4.2.10 getVector() . 48
4.2.11 getInt() . 49
4.2.12 getResponse() . 50
4.2.13 unreferenceResponse() . 50
4.2.14 unreferenceMessage() . 51
4.2.15 stringToUTF8() . 51
4.2.16 stringToLocale() . 52

5 Bluetit D-Bus Interface 53
5.1 D-Bus Names . 53
5.2 D-Bus Configuration Files . 53

5.2.1 Server Configuration . 54
5.2.2 Client Configuration . 54

5.3 Return Messages . 54
5.4 Public D-Bus Methods . 55

5.4.1 version . 55
5.4.2 bluetit_status . 56
5.4.3 openvpn_info . 56
5.4.4 openvpn_copyright . 56
5.4.5 reset_bluetit_options . 56
5.4.6 set_options . 57
5.4.7 set_openvpn_profile . 57
5.4.8 start_connection . 58
5.4.9 stop_connection . 58
5.4.10 pause_connection . 58
5.4.11 resume_connection . 59
5.4.12 reconnect_connection . 59
5.4.13 session_pause . 59
5.4.14 session_resume . 59
5.4.15 session_reconnect . 60
5.4.16 connection_stats . 60
5.4.17 enable_network_lock . 61
5.4.18 disable_network_lock . 62
5.4.19 network_lock_status . 62
5.4.20 recover_network . 62
5.4.21 airvpn_set_key . 62
5.4.22 airvpn_start_connection . 63
5.4.23 event . 63
5.4.24 log . 63

5.5 Bluetit Events . 64
5.5.1 event_end_of_session . 65

4

5.5.2 event_connected . 65
5.5.3 event_disconnected . 66
5.5.4 event_pause . 66
5.5.5 event_resume . 66
5.5.6 event_error . 66

5.6 Response Dataset Identities . 67
5.6.1 airvpn_server_info . 67
5.6.2 airvpn_server_list . 69
5.6.3 airvpn_country_info . 70
5.6.4 airvpn_country_list . 70
5.6.5 airvpn_key_list . 71
5.6.6 airvpn_save . 72

5

6

List of Figures

1.1 Bluetit client/server architecture . 11
1.2 Bluetit main D-Bus loop . 13
1.3 Bluetit option sequence for a connection to an AirVPN country 14
1.4 Example of processing a Bluetit log message by using the DBusConnector class 17
1.5 Bluetit client session diagram . 18
1.6 Starting an OpenVPN session . 19
1.7 Starting an AirVPN session . 21

3.1 The structure of a DbusResponse object . 27
3.2 Example of a DbusResponse object . 27

4.1 Example of calling a Bluetit D-Bus method by using the DBusConnector class 40
4.2 Example of getting the integer value associated to DBusMessage returned by a Bluetit

D-Bus method and by using the DBusConnector class . 41
4.3 Example of getting a DBusResponse object from a DBusMessage returned by a DBusConnector

object . 42

5.1 D-Bus names used by the Bluetit daemon and client . 53
5.2 Default D-Bus configuration file for Bluetit daemon (server) 54
5.3 Default D-Bus configuration file for Bluetit client . 55
5.4 The structure of a Bluetit event . 64
5.5 Example of sending a Bluetit event to the client . 64
5.6 Example of receiving a Bluetit event from the daemon . 65
5.7 The structure of a Bluetit dataset . 67
5.8 Example of requesting a Bluetit dataset about a specific AirVPN server 67
5.9 Example of processing a Bluetit dataset about a specific AirVPN server 68

List of Coding Examples

2.1 Throwing a DBusConnectorException . 25

3.1 Iterating a DBusResponse::Item object . 28
3.2 Using a DBusResponse::ItemIterator . 29
3.3 Iterating the whole set of items in a DBusResponse object 29
3.4 Using a DBusResponse::Iterator . 30
3.5 Creating an empty DBusResponse object . 30
3.6 Destroying a DBusResponse object . 31
3.7 Deleting all items in a DBusResponse object . 31
3.8 Setting the response message of a DBusResponse object 31
3.9 Getting the response message associated to a DBusResponse object 32
3.10 Adding an item to a DBusResponse dataset . 33

7

3.11 Addding a new element to an item for a DBusResponse dataset 33
3.12 Get a specific item from a DBusResponse dataset . 34
3.13 Get the item count in a DBusResponse dataset . 34
3.14 Get the count of elements in a DBusResponse item . 34
3.15 Get the value of a named element in a DBusResponse item 35
3.16 Get the key name of a DBusResponse::ItemIterator . 36
3.17 Get the value of a DBusResponse::ItemIterator . 36
3.18 Populate a DBusResponse object from string . 37
3.19 Convert a DBusResponse object into a string . 37

4.1 Contructing a DBusConnector object . 41
4.2 Destroying a DBusConnector object . 42
4.3 Reading and dispatching D-Bus messages by using a DBusConnector object 43
4.4 Popping a D-Bus messages from the queue by using a DBusConnector object 44
4.5 Checking a D-Bus method by using a DBusConnector object 44
4.6 Calling a D-Bus method by using a DBusConnector object 45
4.7 Calling a D-Bus method returning a reply by using a DBusConnector object 46
4.8 Replying to a D-Bus message by using a DBusConnector object 47
4.9 Get the arguments associated to a D-Bus message by using a DBusConnector object . . . 48
4.10 Get the vector associated to a D-Bus message by using a DBusConnector object 49
4.11 Get the integer value associated to a D-Bus message by using a DBusConnector object . 49
4.12 Get the DBusResponse object associated to a D-Bus message by using a DBusConnector

object . 50
4.13 Unreferencing a DBusResponse object . 50
4.14 Unreferencing a D-Bus message by using DBusConnector object 51
4.15 Converting a string into UTF-8 encoding by using a DBusConnector object 51
4.16 Converting a string into locale encoding by using a DBusConnector object 52

8

Introduction

AirVPN–SUITE1 is a free and open source set of tools and applications, designed and developed by AirVPN,
providing VPN connectivity both to AirVPN servers and generic OpenVPN systems, targeting Linux2

distributions3 and, partially, macOS™4 systems.
The core component of the Suite is Bluetit, a lightweight D-Bus controlled system daemon providing

VPN connectivity through OpenVPN3-AirVPN, a fork from the original OpenVPN 3 branch.
Bluetit exposes a D-Bus interface which can be used by client applications in order to control the

daemon and provide full interaction and connectivity with the whole AirVPN infrastructure.
Full user documentation for AirVPN–SUITE is available at https://airvpn.org/suite/readme

whereas the complete source code is available at AirVPN–SUITE GitLab repository at
https://gitlab.com/AirVPN/AirVPN-Suite.

The goal of the AirVPN–SUITE is to support the widest range of Linux distributions and architectures,
as well as the currently supported macOS architectures. The suite provides connectivity and support to
any OpenVPN server – including AirVPN servers – by using the OpenVPN3-AirVPN fork5.

The OpenVPN3-AirVPN fork is actively maintained and developed by AirVPN and derived from the
master branch of OpenVPN36.

From a design point of view, the AirVPN–SUITE is a set of classes, some of them interdependent one
to each other, providing full access and interoperability with the AirVPN family server located all over
the world and allowing its users to automatically connect to the best VPN server according to traffic and
connectivity at a given time and country.

Connectivity to AirVPN servers is provided by the OpenVPN3-AirVPN class library, derived from the
master branch of OpenVPN3 project. The OpenVPN3-AirVPN class library, besides fixing some bugs and
unexpected behaviors found in the main branch, it also adds new features to the project, including those
allowing OpenVPN3 to get a better performance and integration with AirVPN servers.

AirVPN–SUITE is currently made of three major components (applications):

• Bluetit, a distributed and lightweight system daemon based on D-Bus7 and currently available for
Linux systems only

• Goldcrest, a command line client for Bluetit

• Hummingbird, a stand-alone and lightweight application based on OpenVPN3 and available both
for Linux and macOS systems

Bluetit – and therefore its client Goldcrest as well as any other client – are fully based on D-Bus
for their inter-process communication needs, while Hummingbird, being a standalone application, can
be virtually ported to any development system or environment fully compliant to standard C++ 14. At
the time of writing this document, OpenVPN3-AirVPN provides native support for Linux, macOS and
Windows®8 only.

It should however be noted that all the classes and tools designed and developed for the AirVPN–SUITE
and not depending on other tools and libraries (such as D-Bus) have been designed by using standard
C++ 11 classes and convention, therefore ensuring the highest level of portability and use in the widest

1AirVPN–SUITE can be freely downloaded from AirVPN’s website at https://airvpn.org/linux/suite
2Linux Kernel is a free open source Unix-like operating system kernel and released under the GNU GPL2 license.

https://www.kernel.org
3A Linux distribution is a packaged set of tools and software, including the Linux kernel, system software and libraries,

many of them being provided by the GNU Project.
4Mac™ and macOS™ are trademarks of Apple Inc., registered in the U.S. and other countries and regions.
5https://github.com/AirVPN/openvpn3-airvpn
6OpenVPN and OpenVPN3 are Copyright © 2002-2021 OpenVPN Inc. https://github.com/OpenVPN/openvpn3
7D-Bus is an inter-process communication (IPC) mechanism and part of the freedesktop.org project

https://www.freedesktop.org/wiki/Software/dbus/
8Windows® is a registered trademark of Microsoft Corp.

9

https://airvpn.org/suite/readme
https://gitlab.com/AirVPN/AirVPN-Suite
https://airvpn.org/linux/suite
https://www.kernel.org
https://github.com/AirVPN/openvpn3-airvpn
https://github.com/OpenVPN/openvpn3
https://www.freedesktop.org/wiki/Software/dbus/

number of systems, compilers and environments. The AirVPN–SUITE also makes use of a small set of
libraries part of the GNU Project9 which are commonly found and available in every Linux Distribution
and, thanks to their highly portable design, are available for other systems as well, including macOS.

This document covers Bluetit infrastructure and architecture as well as providing a complete reference
for all the AirVPN’s classes on which the suite is based. The goal is to give any developer who wishes
to write a Bluetit client or a tool providing AirVPN interconnectivity, a complete reference about the
internals of both Bluetit daemon and the AirVPN–SUITE C++ classes.

The document is structured in chapters, giving an overview and in-depth information about Bluetit
architecture and how a client should communicate with it in order to request and get all the available
services provided by the daemon. The preferred method of inter-operating with Bluetit is by using
AirVPN–SUITE C++ classes, although this is limiting the development of a client in C++ only.

All the AirVPN–SUITE classes can be virtually ported to any object-oriented programming language
provided it can offer access or support to D-Bus. Also note AirVPN–SUITE classes are based on D-Bus
low level C API and the use of an object-oriented programming language is not mandatory provided
the target functions and/or classes are developed according to the AirVPN–SUITE classes marshaling
mechanism, which is essential for the whole architecture in order to exchange data to and from the
clients and the daemon.

9“GNU’s Not Unix” home page https://www.gnu.org/

10

https://www.gnu.org/

Chapter 1

Bluetit System Architecture

Bluetit is the core component of the AirVPN–SUITE and it is running in the system as a real daemon1.
This basically means the Bluetit daemon cannot be directly controlled by using a terminal – as a matter of
fact, it cannot acquire any terminal control – save the case of sending it signals corresponding to specific
actions or tasks.

AirVPN
Servers

OpenVPN
Servers

Bluetit

AirVPN-Suite Classes

OpenVPN3-AirVPN

Client

AirVPN-Suite Classes

D-Bus

System Network Layer

Network Lock (System Firewall) and DNS

Figure 1.1: Bluetit client/server architecture

The only allowed way to control Bluetit daemon is by
using an authorized client started from an authorized user
which sends permitted methods through the D-Bus inter-
process communication daemon.

Bluetit uses a simple client/server architecture and the
inter-process communication between the two parts is real-
ized with the D-Bus daemon running in the system. Bluetit,
in turn, reaches the outside world – that is, OpenVPN
servers, either run by AirVPN or other parties – by using
OpenVPN3-AirVPN C++ class library which is a direct fork
of the OpenVPN3 master branch. The connection with the
external VPN servers is in charge of the system network
layer sending and receiving data through a dedicated and
encrypted IP tunnel2 created and managed by OpenVPN3.

Figure 1.1 shows Bluetit architecture and how it inter-
acts with the system components and resources. Bluetit is
the main and central component of the architecture and con-
trols the communication both with D-Bus and the network.
The inter-process communication with D-Bus is ensured by
the AirVPN–SUITE C++ classes and taking care of the whole
process, from receiving and sending data to and from the
client up to providing a marshaling mechanism capable of
transparently handling complex datasets. This architecture
is therefore effective in representing a virtually endless set of
information and with a variable and non-homogeneous struc-

ture. This includes – but it is not limited to – objects belonging to the same class as well as unrelated
objects or data structures.

The network part of Bluetit actually is a bit more complex as it needs to take care of different aspects
in order to provide a secure and private VPN connection, as well as preventing data and DNS3 leaks,
according to its configuration or client needs.

The internal architecture of Bluetit is made of components each taking care and managing specific

1In Unix-like operating systems, a daemon is a program running as a background process, usually created by forking a
child process and then immediately exiting, therefore ensuring the init process to adopt it as a child process. Moreover
and for security reasons, a real daemon must be dissociated from any TTY terminal – including closing all standard I/O
streams – as well as forcing and guaranteeing the child (forked) process to not be the session leader, therefore preventing
the daemon from ever acquiring a controlling terminal.

2An IP tunnel is a dedicated Internet Protocol (IP) network communications channel between two networks and the
exchange of data is realized by encapsulating data packets. Specifically, in case of Bluetit, the packets are encrypted before
sending and decrypted upon reception, thus ensuring a secure and private communication

3DNS is the acronym for “Domain Name System”, a hierarchical and decentralized naming system allowing a computer
or device connected to the Internet to properly resolve and get the real IP address of a FQDN (fully qualified domain name)
or URI (Universal Resource Identifier) such as https://www.airvpn.org

11

https://www.airvpn.org

services. These components are inter-connected and may depend one on each other or however their
scope and service may be relative to other ones.

1.1 Bluetit Components
Bluetit, the core component of AirVPN–SUITE, is built as a monolithic daemon and it is made of six major
and inter-connected components which can be summarized like this:

• D-Bus layer

• Options and command manager

• OpenVPN3 service

• AirVPN manager

• Network Lock and DNS manager

• Logger

The above components are usually implemented by a specific C++ class or a set of classes, there-
fore taking advantage of the object-oriented analysis and design paradigm (OOAD) optionally ensuring
the portability of the project or part of its components. The choice of having Bluetit as a monolithic
component encapsulating other components is dictated by the need of not calling or loading external
components or modules at run time, save the system libraries and tools essential for Network Lock and
DNS management. However, also in this case, the use of external tools is minimized and always called
by using a “best effort practice” in order to ensure a reliable security model while trying to prevent and
limit external exploits as much as possible.

1.1.1 D-Bus Layer
The D-Bus layer takes care of inter-process communication between the Bluetit daemon and client by
using D-Bus low level API provided by libdbus, a library part of the D-Bus installation set, available
in any Linux system using and having a fully installed and configured D-Bus.

Specifically, Bluetit’s D-Bus Layer waits for any incoming D-Bus method, executes the corresponding
action and then replies to the client by communicating the operation status. For more information about
Bluetit’s D-Bus methods and use, refer to section 5.4 Public D-Bus Methods.

Although Bluetit D-Bus layer is using low level C API functions provided by libdbus, the high
level interaction between client and server is realized by specialized and custom classes specifically built
for the AirVPN–SUITE and part of it. These classes implement a handy wrapper for low level D-Bus
C API functions, therefore allowing a more linear, consistent and homogeneous integration with C++.
Although the D-Bus connection between Bluetit daemon and its client could preferably be realized by
using AirVPN–SUITE’s D-Bus classes, the developer is not forced to do so and every D-Bus library or
facility can be virtually used to accomplish this task.

In case the developer wishes to use a different D-Bus library or functions to communicate with
Bluetit, it is mandatory for the system to obey and provide the same marshaling mechanism implemented
in AirVPN–SUITE D-Bus classes. The information exchanged to and from Bluetit can be quite complex
and representing unrelated data sets, structures and objects in the very same transaction. The marshaling
mechanism implemented in the AirVPN–SUITE D-Bus classes can transparently process these data and
present them to the upper class in the form of C++ data, structures and objects. The AirVPN–SUITE
D-Bus classes are explained and covered in detail in chapters 2, 3 and 4.

The marshaling mechanism implemented by AirVPN–SUITE D-Bus classes will not be covered in this
document as it goes beyond of its scope. Those who are interested in implementing a similar marshaling
mechanism in their custom clients can refer to the source code of DBusResponse class available in the
official AirVPN–SUITE repository4, in particular fromString() and toString() methods.

Bluetit D-Bus layer needs to be properly configured in order to ensure a safe and controlled access
and communication. This is done by adding specific unit files to the D-Bus configuration, both for the
server daemon and the client, as explained in chapter 5 Bluetit D-Bus Interface.

The AirVPN–SUITE distribution package includes ready-to-use D-Bus unit files which are installed
during the installation process. The system administrator is free to change, set and fine tune the access

4AirVPN–SUITE GitLab repository is avilable at https://gitlab.com/AirVPN/AirVPN-Suite

12

https://gitlab.com/AirVPN/AirVPN-Suite

policy defined in these unit files in order to suit local system needs. By default, D-Bus access is granted
only to users belonging to the system user group airvpn and, of course, the root user.

The use of Bluetit D-Bus interface is granted on an exclusive policy. This does mean Bluetit accepts
one client at a time only, that is the client successfully connecting to the interface and therefore taking
the exclusive use of it until it closes the connection or Bluetit decides to terminate the session.

The exclusive policy is used in order to prevent external interference from other clients and which
could deeply affect and change the current session status. In this specific case, a session is anything
started or requested by the client to the Bluetit daemon, such as information about an AirVPN server or
starting a VPN connection.

A session can terminate upon client request or when Bluetit terminates a task requested by the
client. For example, in case a SIGTERM signal is sent to the client, it subsequently requests to Bluetit the
disconnection from the current VPN server. In this case it is the client which asks for the termination of
the session, although it is Bluetit to actually terminate it.

Another case is when it is Bluetit to decide the session is terminated at the completion of task
associated to the client’s request and, after having sent the response to it, an end of session event will
follow.

A session internally started by Bluetit – such as connecting to an AirVPN server at boot time – is
different from a client session and, as a matter of fact, it can be controlled by any authorized client
by starting a dedicated session in order to alter Bluetit’s internal session status, such as pausing or
disconnecting the active VPN connection.

The root user can change the status of Bluetit at any time – including terminating a session, whether
internal or started by a client – by sending system signals to it or by using system administration tools,
such as systemd commands.

1.1.2 Options and Command Manager
Bluetit is a daemon driven by commands, options and system signals. While the management of system
signals is implemented through the relative standard C library functions (such as signal()) and dedicated
handlers, the options and commands are entirely managed by a specific layer.

Each function, command or service provided by Bluetit to the client must be requested by sending
the corresponding option or D-Bus method. The structure and management of Bluetit commands and
options is similar to the standard C mechanism used to pass options to a program from the terminal
or a shell script. In other words, it is similar to the concept adopted in the well-known argc and argv
arguments used by the main() function in a C program.

In the specific case of Bluetit, the array of options and values are represented by a standard C++

vector of strings (that is, a std::vector<std::string> object) and passed from the client to the server
through the inter-process communication service of D-Bus. This vector object is then passed to Bluetit
and processed by the “Options and Command Manager” implemented with a dedicated class. The option
manager is invoked by the D-Bus “set_options” method used by a client to set the configuration of a
session, whereas Bluetit commands are parsed in its D-Bus main loop.

Figure 1.2 shows how Bluetit processes options and commands received from a client. The main Bluetit
thread is dedicated to the D-Bus loop and runs until it receives a termination signal either from the
root user or a controlling process, such as systemd.

When the client sends a vector of options to Bluetit or calls a D-Bus method, it is then processed and
each command or option/value pair is evaluated, the associated task is run, and finally a reply is sent

dbus_main_loop
{

wait_for_dbus_method_from_client

if D-Bus method is "set_options"; then
process_requested_commands_and_options

else
evaluate_and_process_other_dbus_methods

reply_to_client
}

Figure 1.2: Bluetit main D-Bus loop

13

back to the client through D-Bus.

air-user

std::vector<std::string>

0:

cathy1:

air-password2:

x#4P6&3cx78!§a43:

4: air-country

5: germany

Figure 1.3: Bluetit option sequence for a connec-
tion to an AirVPN country

Figure 1.3 shows the option sequence needed to
request a connection to the currently best AirVPN
server located in Germany. As it can be seen, the
std::vector<std::string> object is constructed in order
to have seven elements and each containing an option, value
or command. It is then up to Bluetit options and command
manager to properly interpret and use the items contained
in this vector object.

The structure is similar to the well-known argc and argv
pair used to pass options to a C program main() function
from the shell. Options and commands are sent to Bluetit
without a preceding double dash, something needed when
using a command line client, such as Goldcrest. As a mat-
ter of fact, the Goldcrest client receives the commands and
options from argc and argv variables, it subsequently cre-
ates the std::vector<std::string> object with each value
in argv (element number 0 excluded) by removing the double
dash beforehand and finally adding the value to the vector.

As it can be seen in figure 1.3 the sequence needed by
Bluetit for starting a VPN connection, in this case, to the best
server in Germany, is made of seven items. Each command
or option (that is, all those beginning with “air-”) is represented without the preceding double dash. An
option is always followed by a value, for example, air-user option is followed by cathy value), whereas
a command (such as ncp-disable) does not have any associated value. It is up to Bluetit’s options and
command manager to properly manage this sequence and act as needed.

For the sake of completeness, the connection to the AirVPN session configured with the options shown
in figure 1.3 is actually started by calling the D-Bus “airvpn_start_connection” method. For more
information about AirVPN connection, refer to section 1.4.3 Starting a Connection to an AirVPN Server.

For a complete list and use of Bluetit’s commands and options, read the AirVPN–SUITE user manual
available at https://airvpn.org/suite/readme and part of the distribution package. In particular, the
list of options and command, including examples for some specific cases, can be found in the Goldcrest
section5. Each command or option can be used both in its long and short form. For example, option“air-
server” (long form) has a corresponding short form option “S” (upper case letter “S”) and they can be
used interchangeably for the same purpose. This means that sending “air-server” or “S” to Bluetit
has the effect of starting a connection process to an AirVPN server according to the other options and
commands.

1.1.3 OpenVPN3 Service
The whole communication with VPN servers is realized with an encrypted and private tunnel, completely
managed by OpenVPN3-AirVPN library, a direct fork from OpenVPN36 master branch and directly
developed and maintained by AirVPN. Our fork has many advantages over the original branch, including
– but not limited to – the fixing of some serious bugs preventing Linux from properly managing the
connection and tunnel in some circumstances. Moreover, it offers new features, not available in the
master branch, such as:

• CHACHA20-POLY1305 cipher support for both control and data channels. A feature added in times
when it was not available in the master branch and, in this regard, AirVPN has been the first one
to add support for this cipher to OpenVPN3 as it was crucial for our Eddie Android application

• Cipher override to client configuration

• ncp disable override to client configuration

• tcp-queue-limit override to client configuration

• ncp-disable option in openvpn profile

• data-ciphers option in openvpn profile in order to comply to OpenVPN 2.5 negotiable data cipher
specifications

5https://airvpn.org/suite/readme/#goldcrest-client
6OpenVPN and OpenVPN3 are Copyright © 2002-2021 OpenVPN Inc. https://github.com/OpenVPN/openvpn3

14

https://airvpn.org/suite/readme
https://airvpn.org/suite/readme/#goldcrest-client
https://github.com/OpenVPN/openvpn3

• Added support for DNS push ignore to Tunnel Builder

OpenVPN3-AirVPN fork, besides ensuring full compatibility with OpenVPN 2.x and the original
OpenVPN3 master branch, has also been adapted and extended in order to suit the specific AirVPN
needs and ensure fully interactivity and support with the AirVPN server infrastructure.

The OpenVPN3 service is completely managed by Bluetit and cannot be directly reached by the client
as it is under the complete control of the daemon. OpenVPN3-AirVPN is part of Bluetit architecture
and it is encapsulated at compilation time. In other words, it is not an external tool or library, it is
an internal component. From an architectural point of view, the use of OpenVPN3 offers a safer and
more secure model than actually calling an external OpenVPN binary. It should be said OpenVPN3 does
not offer the wide range of options, functionality and features available, for example, in OpenVPN 2.5,
however the fact it can be compiled, therefore encapsulated in a project as a class, undoubtedly offers a
more secure and safer component, therefore limiting and preventing external events to actually exploiting
inside a system. The choice of using OpenVPN3 over the binary counterpart of the 2.x series, certainly is
more adequate in Bluetit as it is a component on its own, not to mention, it is run as a system daemon,
therefore having root privileges which could become dangerous when improperly managed, such as in
case of calling an external application.

Bluetit uses the OpenVPN3’s OpenVPN3Client class by defining its own VpnClient class which is, in
turn, created by inheriting this class as public as well as other specialized and internal classes.

Bluetit’s VpnClient class is therefore the core object taking care of the VPN connection by using
OpenVPN3. It of course extends the VPN functionality in order to suit its own needs as well as redefining
and overriding all the virtual methods of the parent class.

1.1.4 AirVPN Manager
The AirVPN Manager is responsible for maintaining and ensuring communication with the AirVPN server
infrastructure and services. It is actually made by a set of dedicated classes each responsible for a specific
service or task, such as gathering information about the AirVPN user, servers and status.

This layer allows a client to fully interact with the AirVPN infrastructure by providing specific and
relative options and commands. This component provides to the client full support with the interaction
to the AirVPN infrastructure and in a completely transparent way by also processing and managing all
the low level communication to the AirVPN system.

The client can interact with this component by sending Bluetit the corresponding options and com-
mands by invoking the D-Bus “set_options” method as well as dedicated AirVPN D-Bus methods as
explained in section 5.4 Public D-Bus Methods.

The AirVPN manager also takes care of the user login and logout procedures, as well as controlling
the whole user session with the AirVPN servers. For example, in this specific case, the login and logout
procedure is triggered by the “Options and Command Manager” when it receives the relevant options
about a user login action. To clarify this, let’s consider the example shown in figure 1.3. The first
four items of the std::vector<std::string> object are directly passed to an AirVPN user object which
actually starts the login request and session with the AirVPN infrastructure.

The AirVPN Manager is also in charge of keeping the list and performance of each server up-to-date
in order to always provide reliable and latest information about the whole AirVPN’s VPN infrastructure.
It is also crucial for the “quick connection” procedure as it is strongly based on this information in
determining the best server and according to the client request.

1.1.5 Network Lock and DNS Manager
This component is crucial to Bluetit as it provides and implements a “best effort practice” to prevent
data leak, including traffic and DNS leaks. It is completely dependent on the hosting system and, in
particular, with the available firewall and DNS manager running in the system.

It directly interacts with the system’s firewall and DNS infrastructure by directly calling the corre-
sponding tools in order to change and set the proper conditions and rules, therefore ensuring the “best
effort practice” for data leak prevention. Bluetit currently supports the following firewall systems and
infrastructure:

• iptables and iptables-legacy7

• nftables8

7https://www.netfilter.org/projects/iptables/index.html
8https://www.netfilter.org/projects/nftables/index.html

15

https://www.netfilter.org/projects/iptables/index.html
https://www.netfilter.org/projects/nftables/index.html

• pf9

iptables, iptables-legacy and nftables are the common user-space tools used by the system
administrator to configure the IP packet filter rules of the Linux kernel firewall and implemented by the
Netfilter modules. pf is the well-known “packet filter” firewall system developed for OpenBSD10, then
ported to other operating systems, such as FreeBSD11 and Apple macOS™12.

Hummingbird – the standalone AirVPN’s OpenVPN3 client and part of the AirVPN–SUITE – uses most
of the classes developed for this project and takes advantage of the “Network Lock and DNS Manager”
therefore ensuring a “best effort practice” for Linux (by using iptables, iptables-legacy and nftables)
as well as macOS (by using pf).

The “Network Lock and DNS Manager” can detect the system in which it is running as well as the
firewall system to be used, save the case the client has set Bluetit to operate differently and with a different
firewall system, including to turn it off. The “Network Lock and DNS Manager” actually uses a priority
list in choosing the firewall system and tools. The higher priority is granted to iptables-legacy, then
iptables, after that comes nftables and finally pf.

In case the client – by sending the option “networklock” with the D-Bus “set_options” method –
or Bluetit configuration, sets the “Network Lock” mode to “auto”, the first available firewall system and
tools found according the internal priority list will be used. To summarize the priority list up again:
iptables-legacy ⇒ iptables ⇒ nftables ⇒ pf. It is up to the “Network Lock and DNS Manager”
to operate, set and manage the firewall system in a transparent way and according to AirVPN’s firewall
policy rules in order to ensure a “best effort practice” to prevent data leak.

This component is also responsible for the DNS management according to the DNS push information
sent by the VPN server (either AirVPN’s or generic) and therefore to properly set the hosting machine up.
The Network Lock and DNS Manager can automatically detect and use the following DNS management
tools and modes:

• /etc/resolv.conf file

• systemd-resolved13

The “Network Lock and DNS Manager” is also aware of Network Manager, in case it is running. It is
important to note that any change to the DNS or firewall configuration done while Bluetit is connected
to a VPN server strongly compromises the effect of the “Network Lock”. For this reason it is strongly
advised to not issue any DNS or firewall related command as long as Bluetit is connected.

In case of resolv.conf, the “Network Lock and DNS Manager” directly modifies the content of this
file at the moment of VPN connection and restores it to its previous configuration at disconnection. In
case the DNS management is under the control of systemd-resolved, the “Network Lock and DNS
Manager” directly interacts with it by using the relative external tool and in the same fashion used for
resolv.conf. This means the DNS is set according to the VPN connection needs and therefore restoring
the original configuration at disconnection.

As for the macOS, the management of DNS is done internally in OpenVPN3 by directly calling the
system’s function controlling the DNS configuration – this is the specific case of Hummingbird – and
therefore no external interaction with the system tools is required.

1.1.6 Logger
The logger is a quite straightforward component taking care of all Bluetit’s logging needs. It is responsible
both for sending messages to the system’s log facility (that is, the syslogd daemon) as well as sending
the relevant logging messages to the client.

All the logging messages generated by Bluetit are sent to the system log. Some of these messages are
also sent to the client, depending on whether they are relevant or pertinent to the client scope.

Log messages are sent to the client through the D-Bus layer by invoking the “log” method. The
client therefore needs to explicitly and specifically intercept this method and do the appropriate action
in its D-Bus main loop, such as printing it in the terminal.

A Bluetit log message is processed by a D-Bus method and it is not considered an event as described
in section 5.5 Bluetit Events. A Bluetit event – which is however implemented with a dedicated D-Bus
method – signals the client the change of a condition or status – such as the disconnection from the VPN
server – whereas a log message is a procedure requiring a specific and appropriate action.

9https://www.openbsd.org/faq/pf/index.html
10https://www.openbsd.org
11https://www.freebsd.org
12https://www.apple.com/macos
13https://www.freedesktop.org/software/systemd/man/systemd-resolved.service.html

16

https://www.openbsd.org/faq/pf/index.html
https://www.openbsd.org
https://www.freebsd.org
https://www.apple.com/macos
https://www.freedesktop.org/software/systemd/man/systemd-resolved.service.html

Figure 1.4 shows an example on how a Bluetit log message should be processed by the client and by
using the DBusConnector class14. A log message is intercepted by the client by processing the D-Bus
“log”method and taking appropriate action, such as displaying the message in the terminal or by sending
it to the client’s log file.

1.2 Bluetit Sessions
Bluetit’s distribution model is session dependent. This specifically means each task or action required
to Bluetit corresponds to the creation of a new session. Moreover, this also means Bluetit usually serves
one session at a time, although there are cases in which concurrent sessions can exist, such as in case
of a VPN connection going on and the subsequent request of the connection statistics. The client must
of course have granted a D-Bus connection with Bluetit D-Bus name. The D-Bus connection mode
to Bluetit is always exclusive, that is there can be only one active client connected to the daemon. In
case another client is going to start a D-Bus connection to Bluetit, D-Bus will not allow it because it is
intentionally set to accept just one connection at a time. This mode is defined as “primary owner” in the
D-Bus terminology and both Bluetit and clients connect to the D-Bus name by explicitly requesting to
become the “primary owner”.

Before starting a new session – that is, before invoking a Bluetit D-Bus method – the client must
have successfully been connected to Bluetit’s D-Bus name. As long as a client is connected to Bluetit
via its D-Bus interface, no other client will be allowed to interact with the daemon. While the client
is connected to the D-Bus, therefore is granted to be the “primary owner”, it can start sessions by
requesting any Bluetit valid D-Bus method, however depending on Bluetit configuration and settings.

Bluetit provides for three distinct session types:

• Internal session

• Synchronous client session

• Concurrent client session
14For more information, refer to chapter 4 The DBusConnector Class

#include <iostream>
#include <dbusconnector.hpp>

DBusConnector *dbusConnector;
DBusMessage *dbusMessage;
char *s;

....

while(dbusConnector->readWriteDispatch())
{

while((dbusMessage = dbusConnector->popMessage()) != NULL)
{

if(dbusConnector->isMethod(dbusMessage, "log"))
{

if(dbusConnector->getArgs(dbusMessage, DBUS_TYPE_STRING, &s,
DBUS_TYPE_INVALID))

std::cout << dbusConnector->stringToLocale(s) << std::endl;
else

std::cerr << "ERROR: Cannot retrieve dbus log message" <<
std::endl;

}

dbusConnector->unreferenceMessage(dbusMessage);
}

}

Figure 1.4: Example of processing a Bluetit log message by using the DBusConnector class

17

C
l
i
e
n
t

D
-
B
u
s

Request Method

Call Method

Start Session
Session Start

Execute Task

End of Task

Session End

Task Result
Reply to Client

Receive Reply

Terminate Session

Send end_of_session Event

Receive end_of_session Event

B
l
u
e
t
i
t

Figure 1.5: Bluetit client session diagram

Figure 1.5 shows the diagram about a session started by the client. It all starts with the client request
sent to the D-Bus which subsequently dispatches it to Bluetit. From a client point of view, the operations
needed to successfully start and complete a Bluetit session can be summarized as follows:

1. Request a Bluetit D-Bus method

2. Wait for a reply from D-Bus (if any)

3. Wait for event_end_of_session

Point 2 can be optionally skipped according to the way a D-Bus method is called. In case the client
is developed by using the DBusConnector class, it depends on whether the method is called by using
callMethod() or callMethodWithReply(), that is whether the D-Bus method returns a reply or not.
In case the called method does not return any reply, this point can be skipped. As soon as Bluetit sends
the “end of session” event, it is therefore ready to accept a new session from the client.

In general terms, a session is always started as a consequence of the options and commands sent to
Bluetit by using the D-Bus set_options method as explained in section 1.1.2 Options and Command
Manager, save the case of internal sessions which are always started by properly configuring Bluetit
startup options in bluetit.rc file.

Finally, the start of a new session implicitly resets any option previously sent to Bluetit with the D-
Bus set_options method. To be more precise, all Bluetit settings are always reset to their default value
– the values set in bluetit.rc file are always considered as default – whenever a session is terminated.
All the settings sent to Bluetit must always be considered session settings and are valid and effective for
the currently associated session only.

1.2.1 Internal Session
An internal session simply is a session started by Bluetit, such as starting a connection to a VPN server at
boot time. An internal session can be started by the root user only, for example by setting a connection
at boot time by properly configuring the bluetit.rc file.

The client is never allowed to start an internal session, however it can control it, including termination,
in case it is a session which can be controlled from the client.

For example, in the specific case of an internal session started with the VPN connection at boot, the
client can eventually pause, resume and stop it. Every time a client controls the status of an internal
session, it is actually starting a new client session.

1.2.2 Synchronous Client Session
A synchronous client session strictly follows the sequence shown in figure 1.5. Every session started by the
client belongs to this type and, as a matter of fact, it is mandatory to wait for event_end_of_session
before starting a new one.

This session type can also be used to control both the internal and concurrent sessions, such as
pausing, resuming and terminating a VPN connection.

18

C
l
i
e
n
t

D
-
B
u
s

set_openvpn_profile

set_openvpn_profile

Reply to Client

Receive Reply

Send end_of_session Event

Receive end_of_session Event

set_options
set_options

Reply to Client

Receive Reply

start_connection
start_connection

Reply to Client

Receive Reply

stop_connection
stop_connection

Reply to Client

Receive Reply

B
l
u
e
t
i
t

Figure 1.6: Starting an OpenVPN session

1.2.3 Concurrent Client Session
This particular type of session is always executed in Bluetit by starting a dedicated thread, therefore
allowing the client to start new synchronous sessions. At the moment of writing this document, the only
concurrent session type is associated to VPN connections, both to AirVPN and OpenVPN servers.

When a client requests a concurrent session, Bluetit returns the reply message (if any) and then waits
for new incoming requests. Soon after a concurrent session has terminated – for example, when the VPN
is disconnected – Bluetit sends to the client the associated “event_end_of_session” event. In the case
of VPN disconnection, the event_end_of_session is preceded by the “disconnection” event. For more
information about Bluetit events, refer to section 5.5 Bluetit Events.

1.3 Starting a Generic Session
A generic session is a task requested to Bluetit and not involving any of the AirVPN services. It is generally
used for starting a connection to a generic OpenVPN server, therefore totally unrelated to the AirVPN
universe. This also is the type of session a client would use to start the connection to a generic OpenVPN
server, for example.

In general terms, a generic session is any task requested to Bluetit by sending a non “AirVPN” option,
that is not starting with the “air-” prefix.

1.3.1 Starting an OpenVPN Connection
Starting a connection to an OpenVPN server is considered a special case of a generic session. Besides
optionally using the D-Bus set_options method, the client also needs to send a valid OpenVPN profile
– also known as “configuration file” – to Bluetit. The OpenVPN profile must be sent to Bluetit before
actually starting the connection session by using the D-Bus start_connection method. The OpenVPN
profile is sent to Bluetit by calling the D-Bus set_openvpn_profile method.

Figure 1.6 shows the diagram about a generic OpenVPN connection to a server. The process, from
a client point of view, is made of three steps to establish a connection to a generic OpenVPN server, it
then follows a wait time – that is, as long as the connection is needed and held – after which a “stop
connection” request to Bluetit is sent and finally acknowledging event_end_of_session.

19

The first two steps of the procedure needs to be further discussed. The initial sequence of the process
is about setting options and a valid OpenVPN profile. The call to D-Bus set_options method can be
considered optional in case the client needs to override or set specific options to be used for the connection.
An OpenVPN profile also defines options which are used by Bluetit for the connection process. For this
reason, in case the OpenVPN profile contains all the required options for a connection, the call to D-Bus
set_options method is not required.

All the options contained in the OpenVPN profile are actually changing Bluetit session options and,
in some regards, it is equivalent to calling D-Bus set_options method and by providing those options.

Furthermore, the options set by calling D-Bus set_options method always have a higher priority
over an OpenVPN profile and, in this specific case, the options set with the D-Bus method are actually
an override to the corresponding profile options.

Of course, neither D-Bus set_options method or OpenVPN profile can override Bluetit’s configura-
tion options which are, in turn, unchangeable and always take the highest and ultimate priority. Bluetit’s
settings are defined in its run control file bluetit.rc and set by the system administrator root user.

The OpenVPN session is normally terminated by the client when it requests the disconnection from
the server. This is easily done by calling the D-Bus stop_connection method, waiting for the associated
reply and finally acknowledging event_end_of_session.

A connection can also be terminated by Bluetit as a consequence of some network conditions or
errors, including the case the VPN server is terminating the connection. The client must be aware
of this condition and properly manage it, for example, by processing event_disconnected. For more
information about Bluetit events, refer to section 5.5.

1.4 Starting an AirVPN Session
An AirVPN session is not so different from a generic one in terms of procedure. The differences from the
generic Bluetit session can be summarized like this:

• Use of one or more “air-*” options15

• Login to AirVPN infrastructure by providing user name and password

• Use of AirVPN related D-Bus methods, when needed and according to the required service

Every time a client sends to Bluetit and sets one or more “air-*” options, the session is always
referred as “AirVPN session”. This type of session does not however differ from any Bluetit session and
follows the cycle of the diagram shown in figure 1.5.

1.4.1 AirVPN Options and Settings
Whenever a client sets any of the “air-*” options, the session is always referred as “AirVPN session”. In
this session type, non “air-*” options can be used as well and affect or change the overall configuration
accordingly.

A special mention should be said about the Goldcrest option “air-connect”. This is the only option
defined for this client to have no effect on Bluetit as it simply is an internal Goldcrest triggering option
in order to let it call the D-Bus airvpn_start_connection method when specified in the command line.

For more information on how setting and configure a session, refer to section 1.1.2 Options and
Command Manager.

1.4.2 Login to AirVPN Infrastructure
An AirVPN session requires a login procedure to the AirVPN infrastructure. The login procedure is simply
done by sending to Bluetit both air-user and air-password options, properly assigned to valid user
information. These data are passed to Bluetit via D-Bus and in plain format, in other words, both user
name and password are not encrypted before sending them to the daemon.

Figure 1.3 shows a set of options used for an AirVPN session about a connection to the current best
server in Germany. As long as the login procedure is concerned, only items from 0 to 3 are essential for
the process.

15For a complete list of Bluetit and AirVPN related options, refer to AirVPN–SUITE User Manual available at
https://airvpn.org/suite/readme/#goldcrest-client

20

https://airvpn.org/suite/readme/#goldcrest-client

C
l
i
e
n
t

D
-
B
u
s

Send login information

Send login information

Reply to Client

Receive Reply

Send end_of_session Event

Receive end_of_session Event

set_options
set_options

Reply to Client

Receive Reply

airvpn_start_connection
airvpn_start_connection

Reply to Client

Receive Reply

stop_connection
stop_connection

Reply to Client

Receive Reply

B
l
u
e
t
i
t

Figure 1.7: Starting an AirVPN session

These four items in fact define and set the essential information needed for completing a valid login pro-
cedure. The actual login to the AirVPN infrastructure is performed at the moment of the relative command
execution. In case of the session configuration specified with the options shown in figure 1.3, the login
to the AirVPN infrastructure is performed when the client calls the D-Bus airvpn_start_connection
method. For the sake of completeness, the login procedure is performed before the actual start of the
connection process.

1.4.3 Starting a Connection to an AirVPN Server
Bluetit provides for three distinct connection modes to the AirVPN infrastructure. The connection mode
is determined by the options set for the AirVPN session and it must always be started with the D-Bus
airvpn_start_connection method.

The currently provided connection modes to AirVPN servers are:

• Quick connection

• Server connection

• Country connection

Information about proper configuration and use for each connection mode is discussed in the dedicated
sections below. Figure 1.7 shows the diagram for an AirVPN session. The procedure is the same for all
modes which differ, one from each other, only for the options set for the session.

The notable differences from a generic session – shown in figure 1.6 – are represented by the setting
of login information and the call to D-Bus airvpn_start_connection method. The disconnection
procedure is just the same and involves a call to the D-Bus stop_connection method and finally
acknowledging event_end_of_session.

The diagram shows the setting of options and login information as two separate tasks, both requiring
a call to D-Bus set_options method. In case the client needs to set specific options besides providing
information for AirVPN login, the std::vector<std::string> object can be filled with all the needed
options and call the D-Bus set_options method just once.

The reason why the diagram in figure 1.7 shows these operations as separate tasks is because – as
explained in the below sections – not all the AirVPN connection modes require the setting of specific
options whereas all of them require the login information to be provided by the client.

21

1.4.3.1 Starting a Quick Connection
AirVPN quick connection provide a simple, automatic and straight method to connect to the current best
server of the infrastructure and according to the geographical location of the client. Quick connection
does not require any specific settings and, as a matter of fact, no “air-*” option must be used, except
for login related options.

The client can however use any non “air-*” option in order to set specific connection parameters,
such as port and protocol.

A quick connection requires the following steps and data:

• Set air-user option to the actual AirVPN user name

• Set air-password option to the AirVPN user password

• Set the optional non “air-*” options to their associated values

• Call D-Bus set_options method

• Call D-Bus airvpn_start_connection method

The quick connection procedure is based on an internal Bluetit algorithm taking into account the
geographical location of the machine in which the daemon is running and, more specifically, the location
of the Internet service providing the physical connection to the network.

In case the root user does not explicitly configure a geographical location in the bluetit.rc
file, Bluetit will attempt to automatically determine the current location by inquiring AirVPN’s
https://ipleak.net. You should however be warned the automatic detection of the location – de-
spite the target service is directly managed and owned by AirVPN – implies an external network access
and Bluetit performs this action at boot time, that is, before any actual VPN connection.

The following scenarios should be considered:

• Bluetit persistent Network Lock is enabled

• External network access outside the encrypted tunnel

The persistent Netwotk Lock is enabled by Bluetit at boot time, therefore preventing any external
network access and this includes Bluetit as well. In this specific case, it will be impossible for Bluetit to
inquire AirVPN’s https://ipleak.net and, as a consequence, the geographical location of the machine
will not be determined. In this specific case, the location will be undetermined and the quick connection
algorithm will consider the whole AirVPN infrastructure, therefore connecting to the current best AirVPN
server in the world, possibly resulting in an inefficient VPN connection.

The second scenario should be considered carefully. The determination of the location is done at Bluetit
boot time and in a phase in which there is no VPN connection active, including the “boot connection”
optionally set in bluetit.rc file. This means reaching https://ipleak.net requires a plain DNS
access and then an encrypted transaction – done with secure HTTP – with the AirVPN’s website. The
whole transaction is however done “as plain” and outside the encrypted tunnel.

Because of the above reasons, it is always suggested to manually set the geographical location of the
machine in bluetit.rc file.

1.4.3.2 Starting a Connection to a Specific Server
Connecting to a specific AirVPN server actually consists in providing the very same setup used for quick
connection and further providing both the air-server option and server name to which the client wants
to connect to. A connection to a specific AirVPN server requires the following steps and data:

• Set air-user option to the actual AirVPN user name

• Set air-password option to the AirVPN user password

• Set any required options to their associated values

• Set air-server option to the name of the AirVPN server for which is requested the connection

• Call D-Bus set_options method

• Call D-Bus airvpn_start_connection method

22

https://ipleak.net
https://ipleak.net
https://ipleak.net

As for AirVPN server names, they can be provided in any letter case mode, in other words, the
evaluation of the server name is always case insensitive. For a complete and up-to-date list of available
AirVPN servers, refer to https://airvpn.org/status or, alternatively, use the Goldcrest client with
the below options:

$ goldcrest --air-list --air-server all

1.4.3.3 Starting a Connection to a Specific Country
Connecting to a specific AirVPN country means to request a connection to the best and more efficient
server in a country at that specific time. The choice of the best server for each country is determined from
AirVPN and it is the result of a periodic task in which all the information about servers are gathered,
processed and then sorted in order to provide the user the most reliable information about the best
eserver for each country or continent and, of course, the whole AirVPN infrastructure which is referred
as “earth”.

Starting an AirVPN connection to one of the available countries is not much different from connecting
to a specific server. It basically consists of using the air-country option in place of air-server, as
explained in the previous section.

A connection to a specific AirVPN country requires the following steps and data:

• Set air-user option to the actual AirVPN user name

• Set air-password option to the AirVPN user password

• Set any required options to their associated values

• Set air-country option to the name of the AirVPN country for which is requested the connection

• Call D-Bus set_options method

• Call D-Bus airvpn_start_connection method

As for AirVPN country names, they can be provided both with their actual name (for example,
“Spain”) and their corresponding ISO 3166 Alpha-2 code (for example, “ES”). The value can be expressed
in any letter case mode, therefore the evaluation of the country or continent name, as well as the ISO
code, is always case insensitive. For a complete and up-to-date list of available AirVPN countries, refer
to https://airvpn.org/status or, alternatively, use the Goldcrest client with the below options:

$ goldcrest --air-list --air-country all

As for continent names, these are the currently valid and accepted values for air-country option for
Bluetit version 1.1.0:

• earth (the whole AirVPN server infrastructure)

• europe

• asia

• america (the whole American continent, including south, central and north)

1.4.4 AirVPN Logout
The logout procedure is automatically done by Bluetit and, therefore, there is no need for the client to
call any logout related method or command.

The procedure is always and automatically performed by Bluetit at the end of each session and it is
completed just before sending event_end_of_session to the client. In other word, whenever the client
receives this event, it also means the associated user has been successfully logged out from the AirVPN
infrastructure and Bluetit is therefore ready to accept a new session and start the associated task.

23

https://airvpn.org/status
https://airvpn.org/status

24

Chapter 2

The DBusConnectorException Class

The DBusConnector class can throw exceptions in case of specific and critical conditions. For this
purpose, the DBusConnectorException class is used whenever a critical error or condition arises and
therefore causing the DBusConnector object to not complete its task.

The DBusConnectorException is a standard C++ class derived from std::exception class and in-
herits all its members as public.

2.1 Public Methods
2.1.1 DBusConnectorException()
Class constructor

DBusConnectorException(const std::string &errorMessage)
DBusConnectorException(const char *errorMessage)

Constructs a DBusConnectorException object.

Arguments:
errorMessage: Exception error message.

Example 2.1: Throwing a DBusConnectorException

#include <dbusconnector.hpp>

throw(DBusConnectorException("Failed to connect to D-Bus"));

2.1.2 ∼DBusConnectorException()
Class destructor

∼DBusConnectorException()

Destroys a DBusConnectorException object.

2.1.3 what()
Exception description

25

const char *what()

Returns the exception message associated to the DBusConnectorException object.

Return:
const char *: A pointer to a C-string with content related to the exception. This is guaranteed to

be valid at least until the DBusConnectorException object from which it is obtained
is destroyed or until a non-const member function of the DBusConnectorException
object is called.

26

Chapter 3

The DBusResponse Class

Item 0

Response message

Item 1

Item 2

Item n

Figure 3.1: The structure of a
DbusResponse object

The DBusResponse class is the main and preferred way used by Bluetit
to provide a meaningful response to the client at the end of a request,
as explained in section 5.4 Public D-Bus Methods.

The class allows the construction of datasets, including complex data
sets made of unrelated and non homogeneous data types and contexts.
A DBusResponse object can be seen as response message and a dataset
represented by a vector of items where each of them can be, in turn,
made of a single element or a set of information. A DBusResponse object
always has a response message associated to it, whereas the dataset
vector is optional and according to the use and data represented by the
object.

The response message is a standard C++ string which can be conve-
niently used to return to the caller the exit status or error message as
well as a “tag” identifying the dataset type. For specific DBusResponse
datasets used by Bluetit, read section 5.6 Response Dataset Identities.

Each element of the dataset item is a named entity to which its
relative and exclusive data value is associated. Figure 3.1 shows the
typical structure of a DBusResponse object.

Item 0

Item 1

country: Netherlands
active_users: 1287

Response message

OK

server_name: Luhman
bandwidth: 1000000
current_users: 132
IPV4_suppport: yes
IPV6_suppport: yes
status: active

Figure 3.2: Example of a
DbusResponse object

Each item of the DBusResponse dataset is a group of data on its
own and represents a set of information which could also be unrelated
to all the other items of the object. Figure 3.2 shows a basic example
of the structure of a possible DBusResponse object.

Each item is a set of named data (elements) and basically repre-
senting an Item data type of the DbusResponse class. Each Item cor-
responds to a std::map object, therefore a sorted associative container
containing key–value pairs with unique keys. Each item is in fact de-
fined as std::map<std::string, std::string> where the first element
is the name (key) associated to the data contained in the second ele-
ment.

This means a DBusResponse Item can be treated, used and com-
pared as a typical and standard std::map object, including all the stan-
dard C++ functions available for processing this kind of object, such as
standard iterators. The DBusResponse class however provides for iter-
ators both for the whole dataset and the single items making it.

The class also provides for public methods to be used for creat-
ing and manipulating the internal dataset and every single element,

therefore making its data types to be completely managed internally without the need of using the cor-
responding standard C++ methods. In order to ensure a better integrity as well as to provide a complete
self-managed class, the public iterator methods are actually wrappers to the corresponding standard C++

counterparts.
Moreover, the DBusResponse class provides for methods allowing the marshaling of the internal

dataset, therefore allowing a DBusResponse object to be serialized, made persistent or transmitted over
the Internet or any IPC mechanism, both local and remote, such as D-Bus.

27

3.1 Public Types
3.1.1 Item
DBusResponse item

typedef std::map<std::string, std::string> Item

Defines a single item of the dataset associated to the response returned by the DBusConnector object at
the end of a request. It uses a standard C++ map where the first element is the name of each item and
second one is the associated value.

3.1.2 ItemIterator
Standard C++ Item iterator

typedef Item::iterator ItemIterator

Defines the iterator for a single Item in the DBusResponse Item dataset.

3.1.2.1 begin()
Standard C++ ItemIterator iterator

ItemIterator begin(Item item)

Defines the begin iterator for the specified item in the DBusResponse Item dataset.

Arguments:
item: The dataset item for which the ItemIterator is requested for.

Return:
ItemIterator: Iterator pointer to the beginning of ItemIterator, that is the first element in the

item object.

Example 3.1: Iterating a DBusResponse::Item object

#include <iostream>
#include <dbusconnector.hpp>

DBusResponse::Item item;

for(DBusResponse::ItemIterator it = item.begin(); it != item.end(); it++)
{

std::cout << "Name: " << it->first << " - Value: " << it->second <<
std::endl;

}

3.1.2.2 end()
Standard C++ ItemIterator iterator

ItemIterator end(Item item)

28

Defines the end iterator for the specified item in the DBusResponse Item dataset.

Arguments:
item: the dataset item for which the ItemIterator is requested for.

Return:
ItemIterator: Iterator pointer to the end of ItemIterator, that is the last element in the item

object.

Example 3.2: Using a DBusResponse::ItemIterator

#include <iostream>
#include <dbusconnector.hpp>

DBusResponse::Item item;

for(DBusResponse::ItemIterator it = item.begin(); it != item.end(); it++)
{

std::cout << "Name: " << it->first << " - Value: " << it->second <<
std::endl;

}

3.1.3 Iterator
Standard C++ Item iterator

typedef std::vector<Item>::iterator Iterator

Defines the iterator for the whole DBusResponse Item dataset.

3.1.3.1 begin()
Standard C++ Item iterator

Iterator begin()

Defines the begin iterator for the DBusResponse Item dataset.

Return:
Iterator: Iterator pointer to the beginning of Iterator, that is the first Item object in the

DBusResponse Item dataset.

Example 3.3: Iterating the whole set of items in a DBusResponse object

#include <iostream>
#include <dbusconnector.hpp>

DBusResponse::Item item;

....

for(DBusResponse::Iterator it = dbusResponse->begin(); it !=
dbusResponse->end(); it++)
{

29

item = *it;

std::cout << "Name: " << it.first << " - Value: " << it.second <<
std::endl;

}

3.1.3.2 end()
Standard C++ Item iterator

Iterator end()

Defines the end iterator for the DBusResponse Item dataset.

Return:
Iterator: Iterator pointer to the end of Iterator, that is the last Item object in the DBusResponse

Item dataset.

Example 3.4: Using a DBusResponse::Iterator

#include <iostream>
#include <dbusconnector.hpp>

DBusResponse *dbusResponse = new DBusResponse();
DBusResponse::Item item;

....

for(DBusResponse::Iterator it = dbusResponse->begin(); it !=
dbusResponse->end(); it++)
{

item = *it;

std::cout << "Name: " << it.first << " - Value: " << it.second <<
std::endl;

}

3.2 Public Methods
3.2.1 DBusResponse()
Class constructor

DBusResponse()

Constructs an empty DBusResponse object.

Example 3.5: Creating an empty DBusResponse object

#include <dbusconnector.hpp>

DBusResponse dbusResponse = new DBusResponse();

30

3.2.2 ∼DBusResponse()
Class destructor

∼DBusResponse()

Destroys a DBusResponse object.

Example 3.6: Destroying a DBusResponse object

#include <dbusconnector.hpp>

DBusResponse *dbusResponse;

DBusResponse dbusResponse = new DBusResponse();

...

delete dbusResponse;

3.2.3 clear()
Clears all the data contained in a DBusResponse object

void clear()

Clears and destroys all the items and any associated data currently contained in a DBusResponse object.

Example 3.7: Deleting all items in a DBusResponse object

#include <dbusconnector.hpp>

DBusResponse *dbusResponse;

// Remove all data in dbusResponse object

dbusResponse->clear();

3.2.4 setResponse()
Sets the response message

void setResponse(std::string value)

Sets the response message of a DBusResponse object and representing the exit status/result of the
operation associated to the DBusResponse object. It can be any std::string representing a value
globally accepted within the project.

Arguments:
value: A standard C++ string representing the exit/result status.

Example 3.8: Setting the response message of a DBusResponse object

#include <dbusconnector.hpp>

31

DBusResponse *dbusResponse;
bool success;

....

if(success == true)
{

// Operation ended successfully

dbusResponse->setResponse("OK");
}
else
{

// Operation failed

dbusResponse->setResponse("ERROR");
}

3.2.5 getResponse()
Gets the response message

std::string getResponse()

Gets the response message of a DBusResponse object and representing the exit status/result of the
operation associated to the DBusResponse object.

Return:
std::string: Exit/result message associated to the response.

Example 3.9: Getting the response message associated to a DBusResponse object

#include <dbusconnector.hpp>
#include <iostream>

DBusResponse *dbusResponse;
std::string message;

....

message = dbusResponse->getResponse();

if(message == "OK")
std::cout << "Operation ended successfully" << std::endl;

else
std::cout << "Operation failed" << std::endl;

3.2.6 add()
Adds an Item to the dataset

void add(Item item)

Adds (appends) an Item object to the dataset of the associated DBusResponse object.

32

Arguments:
Item: Item object to be added to the dataset.

Example 3.10: Adding an item to a DBusResponse dataset

#include <dbusconnector.hpp>

DBusResponse *dbusResponse;
DBusResponse::Item item;

....

dbusResponse->add(item);

3.2.7 addToItem()
Adds a new element to an Item of the dataset

void addToItem(Item &item, std::string key, std::string value)

Adds a new element (key–value pair) to an Item object.

Arguments:
item: Item object to which the element is to be added.
key: Key name of the element.
value: Value associated to the key.

Example 3.11: Addding a new element to an item for a DBusResponse dataset

#include <dbusconnector.hpp>

DBusResponse *dbusResponse;
DBusResponse::Item item;

....

dbusResponse->addToItem(item, "Server", "Diadema");
dbusResponse->addToItem(item, "Country", "Belgium");

dbusResponse->add(item);

3.2.8 getItem()
Gets an Item of the dataset

Item getItem(int row)

Gets an Item object of the dataset.

Arguments:
row: Number (index) of the element to be retrieved, starting from 0.

Return:

33

Item: Item associated to the “row” entry in the dataset. It returns an empty Item in case row is
out of range.

Example 3.12: Get a specific item from a DBusResponse dataset

#include <dbusconnector.hpp>

DBusResponse *dbusResponse;
DBusResponse::Item item;

....

item = dbusResponse->getItem(1);

3.2.9 rows()
Number of elements in dataset

int rows()

Returns the number of elements (rows) in the dataset.

Return:
int: Number of items currently contained in DBusResponse object.

Example 3.13: Get the item count in a DBusResponse dataset

#include <dbusconnector.hpp>

DBusResponse *dbusResponse;
int rows;

....

rows = dbusResponse->rows();

3.2.10 items()
Number of key-value pairs in item

int items(int row)

Returns the number of key–value pairs contained in the indexed item of the dataset.

Arguments:
int: Index (row) number of the Item of dataset.

Return:
int: Number of key-value pairs contained in the Item object.

Example 3.14: Get the count of elements in a DBusResponse item

#include <dbusconnector.hpp>

34

DBusResponse *dbusResponse;
Item item;
int rows;

....

item = dbusResponse->getItem(2);

rows = dbusResponse->items(item);

3.2.11 getItemValue()
Value of a named element

std::string getItemValue(Item item, std::string key)

Returns the value associated to the element named “key” in an Item.

Arguments:
item: Item object.
key: “key name” of the element of which retrieve value.

Return:
std::string: Value associated to the “key”. It returns an empty string in case “key” does not exist

in the Item.

Example 3.15: Get the value of a named element in a DBusResponse item

#include <dbusconnector.hpp>
#include <iostream>

DBusResponse *dbusResponse;
Item item;
std::string serverName;

....

item = dbusResponse->getItem(1);

serverName = dbusResponse->getItemValue(item, "Server");

if(serverName != "")
std::cout << "Server name: " << serverName << std::endl;

else
std::cout << "Server is undefined" << std::endl;

3.2.12 itemKey()
Key name of ItemIterator

std::string itemKey(ItemIterator it)

Returns the key name associated to an ItemIterator object.

Arguments:

35

it: ItemIterator object.

Return:
std::string: Value of the ItemIterator object.

Example 3.16: Get the key name of a DBusResponse::ItemIterator

#include <iostream>
#include <dbusconnector.hpp>

DBusResponse::Item item = dbusResponse->getItem(3);

for(DBusResponse::ItemIterator it = item.begin(); it != item.end(); it++)
{

std::cout << "Key: " << dbusResponse->itemKey(it) << std::endl;
}

3.2.13 itemValue()
Value of ItemIterator

std::string itemValue(ItemIterator it)

Returns the value associated to an ItemIterator object.

Arguments:
it: ItemIterator object.

Return:
std::string: Key name of the ItemIterator object.

Example 3.17: Get the value of a DBusResponse::ItemIterator

#include <iostream>
#include <dbusconnector.hpp>

DBusResponse::Item item = dbusResponse->getItem(0);

for(DBusResponse::ItemIterator it = item.begin(); it != item.end(); it++)
{

std::cout << dbusResponse->itemKey(it) " = " << dbusResponse->itemValue(it)
<< std::endl;

}

3.2.14 fromString()
Converts a marshaled string into a DBusResponse dataset

bool fromString(std::string str)

Converts a marshaled string, previously created with toString(), into the DBusResponse dataset.

Arguments:

36

std::string: Marshaled string.

Return:
bool: true in case of successful conversion, false in case of error or malformed string.

Example 3.18: Populate a DBusResponse object from string

#include <dbusconnector.hpp>

// Populate the datatet with the marshaled string received from D-Bus

dbusResponse->fromString(str);

3.2.15 toString()
DBusResponse dataset marshaler

std::string toString()

Converts the DBusResponse dataset into a marshaled string suitable to be sent over D-Bus, stored or
serialized into a persistent mean.

Return:
std::string: Marshaled string. It returns an empty string in case the DBusResponse dataset is

empty.

Example 3.19: Convert a DBusResponse object into a string

#include <dbusconnector.hpp>

std::string dataset;

// Marshal the current dataset into a string

dataset = dbusResponse->toString();

37

38

Chapter 4

The DBusConnector Class

DBusConnector is the core class used by Bluetit for all the D-Bus activity. This class is however indepen-
dent from the AirVPN–SUITE although it has specifically been designed and developed in order to meet
and satisfy Bluetit inter-process communication needs.

It is completely based on standard D-Bus specifications1 and it internally uses low-level D-Bus C
API2 as defined in version 1.13.

This ensures full compatibility with any D-Bus system or infrastructure, provided it fully complies to
version 1.13 specifications. This does mean D-Bus communication with Bluetit daemon can be achieved
with any programming language having a full support to D-Bus and implementing 1.13 specifications.

It should however be noted that a client application – regardless of the programming language and
system used for the development – must obey to and follow Bluetit architecture requirements as well as
complying to its D-Bus message format, objects and conventions.

Specifically, any client application needs to comply to Bluetit’s Public D-Bus Methods3 in order to
request any service to Bluetit by invoking its public D-Bus methods and by providing arguments and
values according to the specifications covered in section 5.4.

Likewise, the client application needs to be developed in order to properly process Bluetit D-Bus
responses according to standard D-Bus DBusMessage structure and DBusResponse4 class, this latter
being covered in chapter 3.

The above considerations of course apply in case the client application is going to be developed in a
language different from C++, otherwise the developer can use the D-Bus classes part of AirVPN–SUITE,
specifically DBusConnector5, DBusResponse6 and DBusConnectorException7 classes.

The DBusConnector class provides methods in order to ensure a complete and full D-Bus support
and takes care of all the low level D-Bus operations needed for the inter-process communication to and
from the client, including opening, managing and closing the connection with the D-Bus system daemon.

This class may throw exceptions in case of errors or critical conditions and, in such cases, the developer
needs to properly catch and manage exceptions. All the exceptions thrown by the DBusConnector class
are of type DBusConnectorException. Refer to each class method specification in order to see when and
how exceptions may be thrown by this class.

4.1 Character Encoding and Messages
The DBusConnector class internally uses UTF-88 character encoding. All the messages, strings and
character sequences provided to or received from the DBusConnector class are expected to be encoded in
UTF-8.

1D-Bus is a message bus system, a simple way for applications to talk to one another. In addition to inter-process com-
munication, D-Bus helps coordinate process lifecycle; it makes it simple and reliable to code a "single instance" application
or daemon, and to launch applications and daemons on demand when their services are needed. For more information, refer
to the official Website at https://www.freedesktop.org/wiki/Software/dbus

2https://dbus.freedesktop.org/doc/api/html/index.html
3refer to section 5.4 Public D-Bus Methods
4Refer to chapter 3 The DBusResponse Class
5Refer to chapter 4 The DBusConnector Class
6Refer to chapter 3 The DBusResponse Class
7Refer to chapter 2 The DBusConnectorException Class
8UTF-8, Unicode Transformation Format with 8 bits per code unit. https://www.unicode.org/main.html

39

https://www.freedesktop.org/wiki/Software/dbus/
https://dbus.freedesktop.org/doc/api/html/index.html
https://dbus.freedesktop.org/doc/api/html/index.html
https://www.freedesktop.org/wiki/Software/dbus
https://dbus.freedesktop.org/doc/api/html/index.html
https://www.unicode.org/main.html

In order to make sure all character and string data received by the DBusConnector can be processed
by the class, the public methods receiving data from a client convert them into UTF-8 before proceeding
to further processing.

Likewise, all character and string data sent to a client are converted into UTF-8 before actually sending
the data to the D-Bus daemon. In case the client needs to convert UTF-8 into its locale encoding, the
DBusConnector provides for public conversion methods to be used for this purpose. All the internal
character encoding conversions are done by using GNU’s libiconv9.

All the incoming messages – that is, arguments, options and values required by Bluetit public D-Bus
methods – are expected to be represented by a standard C++ std::vector<std::string> object. Figure
4.1 shows an example on how arguments and values are expected to be passed to a Bluetit D-Bus method
by using the DBusConnector class.

All the responses sent by DBusConnector to the caller may be both represented by a pointer to a
standard DBusMessage structure and to a DBusResponse object and its associated exit (response) status.
All D-Bus methods always return a pointer to a standard DBusMessage structure from which the caller
can get access to the possible associated DBusResponse object, in case it is provided by the called D-Bus
method.

Each DBusMessage may have its own DBusResponse object and, in both cases, they are owned by the
caller. Specifically, each DBusMessage and the relative DBusResponse object are created by allocating a
dedicated memory space in the system and the release of this allocated memory is on the sole responsibility
of the caller. This means it is mandatory for the client to tell the DBusConnector object when the
data contained in DBusMessage and DBusResponse have been processed and are not needed anymore.

The memory allocated for DBusMessage and DBusResponse objects is freed by calling the
9GNU libiconv and libcharset libraries and their header files are released under the LGPL (GNU Lesser General Public

License). https://www.gnu.org/software/libiconv

#include <iostream>
#include <vector>
#include <dbusconnector.hpp>

DBusConnector *dbusConnector = nullptr;
DBusMessage *dbusReply = nullptr;
std::vector<std::string> dbusItems;

try
{

dbusConnector = new DBusConnector("org.airvpn.dbus", "org.airvpn.server");
}
catch(DBusConnectorException &e)
{

std::cerr << e.what() << std::endl;

cleanup_and_exit();
}

dbusItems.clear();

dbusItems.push_back("air-connect");
dbusItems.push_back("air-country");
dbusItems.push_back("Netherlands");

dbusReply = dbusConnector->callMethodWithReply("org.airvpn.server",
"/org/airvpn/server", "set_options", dbusItems);

if(dbusReply == nullptr)
{

// Error

cleanup_and_exit();
}

Figure 4.1: Example of calling a Bluetit D-Bus method by using the DBusConnector class

40

https://www.gnu.org/software/libiconv

#include <iostream>
#include <string>
#include <vector>
#include <dbusconnector.hpp>

DBusConnector *dbusConnector = nullptr;
DBusMessage *dbusReply = nullptr;
int server_status = -1;

dbusItems.clear();

dbusReply = dbusConnector->callMethodWithReply("org.airvpn.server",
"/org/airvpn/server", "bluetit_status", dbusItems);

if(dbusReply == nullptr)
{

std::cout << "ERROR: Invalid reply" << std::endl;

cleanup_and_exit();
}

server_status = dbusConnector->getInt(dbusReply);

dbusConnector->unreferenceMessage(dbusReply);

Figure 4.2: Example of getting the integer value associated to DBusMessage returned by a Bluetit D-Bus method and by
using the DBusConnector class

DBusConnector’s methods unreferenceMessage() and unreferenceResponse() respectively.
Figure 4.2 shows an example on how to get the integer value associated to a DBusMessage and returned

by a D-Bus method call, whereas figure 4.3 shows an example on how to get a DBusResponse object from
a D-Bus method call and its associated exit status. Both examples are to be considered as a hypothetical
continuation of the code shown in figure 4.1.

For more information on how to use Bluetit D-Bus methods, refer to section 5.4, whereas for infor-
mation about DBusResponse class, please refer to chapter 3.

4.2 Public Methods
4.2.1 DBusConnector()
Class constructor

DBusConnector(std::string interface, std::string bus)

Constructs a DBusConnector object and connects to the specified D-Bus interface and bus.

Arguments:
interface: D-Bus interface name.
bus: D-Bus bus name.

Exceptions:
DBusConnectorException: Interface or bus is empty;

connection to D-Bus failed

Example 4.1: Contructing a DBusConnector object

#include <iostream>

41

#include <dbusconnector.hpp>

DBusConnector *dbusConnector = nullptr;

try
{

dbusConnector = new DBusConnector("org.airvpn.dbus", "org.airvpn.server");
}
catch(DBusConnectorException &e)
{

std::cerr << e.what() << std::endl;
}

4.2.2 ∼DBusConnector()
Class destructor

∼DBusConnector()

Destroys a DBusConnector object and closes the connection to the associated D-Bus interface and
bus.

Example 4.2: Destroying a DBusConnector object

#include <iostream>
#include <dbusconnector.hpp>

#include <iostream>
#include <string>
#include <vector>
#include <dbusconnector.hpp>

DBusConnector *dbusConnector = nullptr;
DBusMessage *dbusReply = nullptr;
DBusResponse *dbusResponse = nullptr;

....

try
{

dbusResponse = dbusConnector->getResponse(dbusReply);

if(dbusResponse->getResponse() == "OK")
std::cout << "Options successfully set" << std::endl;

else
std::cout << "Invalid options" << std::endl;

}
catch(DBusConnectorException &e)
{

std::cout << "Cannot get response. D-Bus error: " << e.what() << std::endl;

cleanup_and_exit();
}

dbusConnector->unreferenceResponse(dbusResponse);

dbusConnector->unreferenceMessage(dbusReply);

Figure 4.3: Example of getting a DBusResponse object from a DBusMessage returned by a DBusConnector object

42

DBusConnector *dbusConnector = nullptr;

try
{

dbusConnector = new DBusConnector("org.airvpn.dbus", "org.airvpn.server");
}
catch(DBusConnectorException &e)
{

std::cerr << e.what() << std::endl;
}

...

delete dbusConnector;

4.2.3 readWriteDispatch()
D-Bus message dispatcher

bool readWriteDispatch(int timeout_millis=50)

In case there are D-Bus messages waiting to be dispatched, this method calls the D-Bus dispatcher
once and then returns. The method waits for the timeout_millis before invoking the D-Bus low level
dispatcher. This method is intended to be used in the application D-Bus main loop.

Arguments:
timeout_millis: Maximum wait time in milliseconds. It defaults to 50 milliseconds.

Return:
bool: true in case D-Bus disconnection message has not been processed, false otherwise

Example 4.3: Reading and dispatching D-Bus messages by using a DBusConnector object

#include <iostream>
#include <dbusconnector.hpp>

DBusConnector *dbusConnector;
DBusMessage *dbusMessage;

....

while(dbusConnector->readWriteDispatch())
{

while((dbusMessage = dbusConnector->popMessage()) != NULL)
{

// Process your DBusMessage here

dbusConnector->unreferenceMessage(dbusMessage);
}

}

4.2.4 popMessage()
Gets the first D-Bus message from the queue

43

DBusMessage *popMessage()

Returns the first message from the incoming D-Bus message queue and then removes it from the queue.

Return:
DBusMessage *: Pointer to the retrieved message. The caller owns the reference to the returned

message and must unreference it as soon as it is done processing the message by
using unreferenceMessage(). In case the message queue is empty, it returns
NULL (nullptr).

Example 4.4: Popping a D-Bus messages from the queue by using a DBusConnector object

#include <iostream>
#include <dbusconnector.hpp>

DBusConnector *dbusConnector;
DBusMessage *dbusMessage;

....

while(dbusConnector->readWriteDispatch())
{

while((dbusMessage = dbusConnector->popMessage()) != NULL)
{

// Process your DBusMessage here

dbusConnector->unreferenceMessage(dbusMessage);
}

}

4.2.5 isMethod()
Checks whether a method call is valid

bool isMethod(DBusMessage *dbusMessage, std::string method)

Checks whether the DBusMessage is a method call with the given method interface name.

Arguments:
dbusMessage *: Pointer to the D-Bus message structure which the method belongs to
method: Name of the method to be checked

Return:
bool: true in case the dbusMessage is a method call with the method interface name, false

otherwise.

Example 4.5: Checking a D-Bus method by using a DBusConnector object

#include <dbusconnector.hpp>

DBusConnector *dbusConnector;
DBusMessage *dbusMessage;

....

while(dbusConnector->readWriteDispatch())

44

{
while((dbusMessage = dbusConnector->popMessage()) != NULL)
{

if(dbusConnector->isMethod(dbusMessage, "start_connection"))
{

// process D-Bus method call
}

dbusConnector->unreferenceMessage(dbusMessage);
}

}

4.2.6 callMethod()
Calls a D-Bus method

bool callMethod(std::string bus, std::string path, std::string method,
std::vector<std::string> item)

Calls a D-Bus public method and returns immediately without waiting for D-Bus reply. This method
is intended to call a D-Bus method whose interface does not provide for a reply.

Arguments:
bus: D-Bus bus name.
path: D-Bus path name.
method: Name of the public D-Bus method to be called.
item: Vector of arguments, options and data to be passed to the method

Return:
bool: true in case of successful operation, false in case the D-Bus connection is not available.

Exceptions:
DBusConnectorException: Method name not found or invalid;

Error in appending an item value;
D-Bus execution error

Example 4.6: Calling a D-Bus method by using a DBusConnector object

#include <iostream>
#include <string>
#include <vector>
#include <dbusconnector.hpp>

DBusConnector *dbusConnector = nullptr;
std::vector<std::string> dbusItems;
bool success = false;

....

dbusItems.clear();

dbusItems.push_back("Operation successful");

try
{

success = dbusConnector->callMethod("org.airvpn.server",
"/org/airvpn/server", "log", dbusItems);

45

}
catch(DBusConnectorException &e)
{

// Error
}

if(success == false)
std::cout << "ERROR: D-Bus connection is not available" << std::endl;

4.2.7 callMethodWithReply()
Calls a D-Bus method and returns the D-Bus reply

DBusMessage *callMethodWithReply(std::string bus, std::string path,
std::string method, std::vector<std::string> item)

Calls a D-Bus public method, then waits for D-Bus reply and returns it.

Arguments:
bus: D-Bus bus name.
path: D-Bus path name.
method: Name of the public D-Bus method to be called.
item: Vector of arguments, options and data to be passed to the method

Return:
DBusMessage *: Pointer to the D-Bus message. The caller owns the reference to the returned

message and must unreference it as soon as it is done processing the message by
using unreferenceMessage(). NULL (nullptr) in case the D-Bus connection
is not available.

Exceptions:
DBusConnectorException: Method name not found or invalid;

Error in appending an item value;
Null D-Bus reply;
D-Bus execution error

Example 4.7: Calling a D-Bus method returning a reply by using a DBusConnector object

#include <iostream>
#include <vector>
#include <dbusconnector.hpp>

DBusConnector *dbusConnector = nullptr;
DBusMessage *dbusReply = nullptr;
std::vector<std::string> dbusItems;

....

dbusItems.clear();

dbusItems.push_back("air-info");
dbusItems.push_back("air-server");
dbusItems.push_back("xuange");

try
{

dbusReply = dbusConnector->callMethodWithReply("org.airvpn.server",
"/org/airvpn/server", "set_options", dbusItems);

46

}
catch(DBusConnectorException &e)
{

// Error
}

if(dbusReply == nullptr)
{

// Error

cleanup_and_exit();
}

4.2.8 replyToMessage()
Replies to a D-Bus message

bool *replyToMessage(DBusMessage *dbusMessage, DBusResponse dbusResponse)
bool *replyToMessage(DBusMessage *dbusMessage, std::vector<std::string> item)
bool *replyToMessage(DBusMessage *dbusMessage, int value)

Replies to a pending D-Bus message in response to a callMethodWithReply() call.

Arguments:
dbusMessage *: DBusMessage pointer which the reply is related to.
dbusResponse: DBusResponse object associated to the reply and to be returned to the caller.
item: Vector of C++ strings associated to the reply and to be returned to the caller.
value: Integer value (number) associated to the reply and to be returned to the caller.

Return:
bool: true in case of successful reply, false in case of connection unavailable or invalid reply data.

Exceptions:
DBusConnectorException: Error in creating D-Bus reply;

Error in sending D-Bus reply;
Error in appending data to the return item

Example 4.8: Replying to a D-Bus message by using a DBusConnector object

#include <iostream>
#include <vector>
#include <dbusconnector.hpp>

DBusConnector *dbusConnector = nullptr;
DBusMessage *dbusReply = nullptr;
int status = 1;
bool success = false;

....

try
{

success = dbusConnector->replyToMessage(dbusReply, status);
}
catch(DBusConnectorException &e)
{

// Error

47

}

if(success == false)
{

// Error
}

4.2.9 getArgs()
Gets DBusMessage argument va_list

bool getArgs(DBusMessage *dbusMessage, int firstArgType, ...)

Gets and assigns DBusMessage data by using va_list

Arguments:
dbusMessage *: DBusMessage pointer which the reply is related to.
int: First argument of the va_list associated to the DBusMessage. It is expressed by a series of

data pairs where the first one is a valid DBus type code and the second is the reference to the
variable or object used to rececive the related data. The va_list must be terminated with
the DBus type code DBUS_TYPE_INVALID.

Return:
bool: true in case of successful operation, false in case the D-Bus connection is not available or

DBusMessage in NULL.

Example 4.9: Get the arguments associated to a D-Bus message by using a DBusConnector object

#include <iostream>
#include <dbusconnector.hpp>

DBusConnector *dbusConnector;
DBusMessage *dbusMessage;
char *s, int value;

....

if(dbusConnector->getArgs(dbusMessage, DBUS_TYPE_STRING, &s, DBUS_TYPE_INT,
&value, DBUS_TYPE_INVALID))
{

// Error
}

std::cout << "First argument: " << s << " - Second argument: " << value <<
std::endl;

4.2.10 getVector()
Gets the string vector of a DBusMessage

std::vector<std::string> getVector(DBusMessage *dbusMessage)

Returns a standard C++ vector of strings associated to a DBusMessage

Arguments:
dbusMessage *: DBusMessage pointer which the reply is related to.

48

Return:
std::vector<std::string>: Standard C++ vector of standard C++ strings associated to the

DBusMessage

Example 4.10: Get the vector associated to a D-Bus message by using a DBusConnector object

#include <iostream>
#include <vector>
#include <string>
#include <dbusconnector.hpp>

DBusConnector *dbusConnector;
DBusMessage *dbusMessage;
std::vector<std::string> dbusItems;

....

dbusItems = dbusConnector->getVector(dbusMessage);

if(dbusItems.empty() == true)
std::cout << "Data set is empty" << std::endl;

4.2.11 getInt()
Gets the integer value of a DBusMessage

int getInt(DBusMessage *dbusMessage)

Returns the integer value associated to a DBusMessage

Arguments:
dbusMessage *: DBusMessage pointer which the reply is related to.

Return:
int: Integer value associated to the DBusMessage

Example 4.11: Get the integer value associated to a D-Bus message by using a DBusConnector object

#include <iostream>
#include <vector>
#include <string>
#include <dbusconnector.hpp>

DBusConnector *dbusConnector;
DBusMessage *dbusMessage;
int value;

....

value = dbusConnector->getInt(dbusMessage);

49

4.2.12 getResponse()
Gets the DBusResponse object of a DBusMessage

DBusResponse *getResponseint(DBusMessage *dbusMessage)

Returns the pointer to the DBusResponse object associated to a DBusMessage. Important notice:
the caller owns the returned DBusResponse object and it is on his or her sole responsibility to release
(unreference) it when the object is not needed anymore. To unreference a DBusResponse object the
caller must use the unreferenceResponse() method.

Arguments:
dbusMessage *: DBusMessage pointer which the reply is related to.

Return:
DBusResponse *: Pointer of the DBusRespose object associated to the DBusMessage

Example 4.12: Get the DBusResponse object associated to a D-Bus message by using a DBusConnector object

#include <dbusconnector.hpp>

DBusConnector *dbusConnector;
DBusMessage *dbusMessage;
DBusResponse *dbusResponse;

....

dbusResponse = dbusConnector->getResponse(dbusMessage);

.....

dbusConnector->unreferenceResponse(dbusResponse);

4.2.13 unreferenceResponse()
Unreferences a DBusResponse object

void unreferenceResponse(DBusResponse *dbusResponse)

Unreferences a DBusResponse object associated to a DBusMessage by releasing and freeing all the
associated resources ad memory.

Arguments:
dbusResponse *: DBusResponse pointer to the object to be unreferenced.

Example 4.13: Unreferencing a DBusResponse object

#include <dbusconnector.hpp>

DBusConnector *dbusConnector;
DBusMessage *dbusMessage;
DBusResponse *dbusResponse;

....

50

dbusResponse = dbusConnector->getResponse(dbusMessage);

.....

dbusConnector->unreferenceResponse(dbusResponse);

4.2.14 unreferenceMessage()
Unreferences a DBusMessage structure

void unreferenceMessage(DBusMessage *dbusMessage)

Unreferences a DBusMessage structure. Calling this method is mandatory as soon as the DBusMessage
is not needed anymore.

Arguments:
dbusMessage *: DBusMessage pointer to the structure to be unreferenced.

Example 4.14: Unreferencing a D-Bus message by using DBusConnector object

#include <dbusconnector.hpp>

DBusConnector *dbusConnector;
DBusMessage *dbusMessage;

....

dbusMessage = dbusConnector->popMessage();

.....

dbusConnector->unreferenceMessage(dbusMessage);

4.2.15 stringToUTF8()
Converts a string into UTF-8

std::string stringToUTF8(std::string str)

Converts a string into UTF-8 by using libiconv’s iconvString() function

Arguments:
str: String to be converted

Return:
std::string: Converted string

Example 4.15: Converting a string into UTF-8 encoding by using a DBusConnector object

#include <string>
#include <dbusconnector.hpp>

DBusConnector *dbusConnector;

51

std::string a, b;

....

b = dbusConnector->stringToUTF8(a);

4.2.16 stringToLocale()
Converts a string into the locale encoding

std::string stringToLocale(std::string str)

Converts a string into the locale encoding of the system in which the method is called from and by using
libiconv’s iconvString() function

Arguments:
str: String to be converted

Return:
std::string: Converted string

Example 4.16: Converting a string into locale encoding by using a DBusConnector object

#include <string>
#include <dbusconnector.hpp>

DBusConnector *dbusConnector;
std::string a, b;

....

b = dbusConnector->stringToLocale(a);

52

Chapter 5

Bluetit D-Bus Interface

Bluetit inter-process communication is completely based on D-Bus and implemented through the AirVPN–
SUITE classes DBusConnector, DBusResponse and DBusConnectorException.

D-Bus configuration of Bluetit daemon is done during the installation process and the provided scripts
will copy all the needed files in the proper directories. Bluetit runs out-of-the-box soon after the end of
the installation process and no other configuration procedures are needed.

5.1 D-Bus Names
Bluetit conforms to the D-Bus specifications and, as such, defines its own D-Bus names in order to allow
client to properly have an inter-process communication with the server. These names are required by
D-Bus when the client is going to connect to Bluetit daemon and wants to call its public methods. Figure
5.1 shows all D-Bus names used by Bluetit and that must be referenced by the client.

5.2 D-Bus Configuration Files
The AirVPN–SUITE1 installation package is distributed with both server and client D-Bus configuration
unit files which are installed in the standard path, usually /etc/systemd/system.

Both configuration files define the access policy to Bluetit server and client, however the system
administrator can modify them in order to suit system needs and policy. System administrators are
strongly advised to carefully considering and pondering the rules defined in the D-Bus configuration files
as they have a direct effect on system security. Not to mention, a bad or loose access policy may also
result in a weak system protection therefore bringing the whole system to a critical condition. For this
reason, the system administrator should carefully ponder how users or groups of users can have access
to Bluetit daemon as this may grant unauthorized or “normal” users access to restricted data or parts of
the system, including the risk of exploits, violation and breaching.

Bluetit has been designed in order to minimize exploit risks from within the daemon by limiting, as
much as possible, the use of potentially weak and fragile constructs, including the call to external binaries,
in particular the shell. Despite of this, and because of the indispensable Linux tools and architecture,
some Bluetit internal functions and services require the calling of an external tool, in particular those

1AirVPN–SUITE package for Linux is available here: https://airvpn.org/linux/suite

D-Bus Interface Name: org.airvpn.dbus

Bluetit Server Bus Name: org.airvpn.server

Client Bus Name: org.airvpn.client

Bluetit Server Object Path Name: /org/airvpn/server

Client Object Path Name: /org/airvpn/client

Figure 5.1: D-Bus names used by the Bluetit daemon and client

53

https://airvpn.org/linux/suite

related to the firewall services required for Bluetit’s exclusive “Network Lock” feature, namely iptables
and nft. All the external firewall tools used by Bluetit are called by using the standard C library function
execv() and directly referring to their true path.

5.2.1 Server Configuration
Figure 5.2 shows the default D-Bus unit (configuration) file distributed with the AirVPN–SUITE package.
The definition is rather simple and the only and sole owner of the Bluetit’s server D-Bus name is the
root user.

Moreover, it also defines a rule forbidding anyone, by default, the access to both the D-Bus in-
terface name “org.airvpn.dbus” and Client D-Bus name “org.airvpn.client”. The policy for
“org.airvpn.client” is properly defined in the client configuration file. By default, the server does
not allow access to anyone but root.

5.2.2 Client Configuration
Figure 5.3 shows the default D-Bus unit (configuration) file and distributed with the AirVPN–SUITE
package. As it can be seen, the default policy defines that a “client” is owned by root and all the users
belonging to the airvpn user group. Moreover, they are both granted access to the server (that is, Bluetit
daemon). All the other users in the system are explicitly denied accessing any of the Bluetit methods,
interfaces or resources.

This access policy aims at providing a more reliable and solid security approach as access is granted
only to users belonging to the airvpn user group. The system administrator should in fact be aware any
user having access to the Bluetit D-Bus interface can actually start, stop and manage a VPN connection,
that is can, as a matter of fact, alter the network layer, structure and security of the whole system.

5.3 Return Messages
Bluetit exposes to the allowed clients public methods in order to command specific operation or getting
information about the connection and the AirVPN infrastructure. The whole communication between the
Bluetit daemon and the client is done through the D-Bus service running in the system and, in particular,
by making use of the DBusConnector, DBusResponse and DBusConnectorException.

All the public Bluetit D-Bus methods return a message and an associated data type describing the
result of the requested operation. Each Bluetit public method returns a DBusMessage as provided by the
D-Bus architecture and the caller needs to refer to this message in order to get and access the associated
data.

The data associated to a DBusMessage can be retrieved by using the dedicated methods provided by
the DBusConnector class, in particular getInt(), getVector(), getArgs() and getResponse(). For
the specific message and value returned by each of the Bluetit methods, refer to the following sections.

<!DOCTYPE busconfig PUBLIC
"-//freedesktop//DTD D-BUS Bus Configuration 1.0//EN"
"http://www.freedesktop.org/standards/dbus/1.0/busconfig.dtd">

<busconfig>

<policy user="root">
<allow own="org.airvpn.server"/>

</policy>

<policy context="default">
<deny send_interface="org.airvpn.dbus"/>
<deny send_destination="org.airvpn.client"/>

</policy>

</busconfig>

Figure 5.2: Default D-Bus configuration file for Bluetit daemon (server)

54

<!DOCTYPE busconfig PUBLIC
"-//freedesktop//DTD D-BUS Bus Configuration 1.0//EN"
"http://www.freedesktop.org/standards/dbus/1.0/busconfig.dtd">

<busconfig>

<policy user="root">
<allow own="org.airvpn.client"/>
<allow send_interface="org.airvpn.dbus"/>
<allow send_destination="org.airvpn.server"/>

</policy>

<policy group="airvpn">
<allow own="org.airvpn.client"/>
<allow send_interface="org.airvpn.dbus"/>
<allow send_destination="org.airvpn.server"/>

</policy>

<policy context="default">
<deny send_interface="org.airvpn.dbus"/>
<deny send_destination="org.airvpn.server"/>

</policy>

</busconfig>

Figure 5.3: Default D-Bus configuration file for Bluetit client

5.4 Public D-Bus Methods
Bluetit provides for a set of D-Bus method in order to allow the client to request information or run
VPN related services, such as starting, pausing and stopping a VPN connection.

Each D-Bus method has its own interface – that is requires arguments and options, when needed,
and always returns a data type – however their invocation and use is common to all of them. In general
terms, the client calls a standard D-Bus method – either by using AirVPN–SUITE’s DBusConnector class
or D-Bus standard functions – then waits for a reply from D-Bus, if any, and finally processes the
returned data.

In case a Bluetit method requires arguments, they must be provided always by means of a standard
C++ vector object containing standard C++ string objects, that is a std::vector<std::string> object.

There are special cases in which a Bluetit D-Bus method – in particular D-Bus “set_options”
method described in section 5.4.6 – may return a dataset containing a set of information relative to a
specific group of homogeneous data. Datasets returned by Bluetit’s D-Bus methods are always repre-
sented by a DBusResponse object as described in section 5.6 Response Dataset Identities.

5.4.1 version
Bluetit version

version

Returns full version information of the Bluetit daemon running in the system. It returns a DBusResponse
object with no items and containing the version information in the response attribute.

Return:
DBusResponse.response: Bluetit version information: Bluetit name, version and release date.

Response
Bluetit name, Bluetit version, Bluetit release date

55

5.4.2 bluetit_status
Bluetit daemon status

bluetit_status

Returns the status code of Bluetit daemon,

Return:
DBusMessage.int: Bluetit integer status code

Bluetit Status Codes
1: Ready to accept commands and connections
2: Connected to VPN
3: VPN connection paused
4: Bluetit dirty status. It means Bluetit has not successfully exited at the end of its last run or
ended abnormally.
5: Unreadable Bluetit resource directory or not found
6: Initialization error. See Bluetit log for more information.
9: Bluetit lock file not found. System has been probably tampered.
99: Unknown or indeterminable status

5.4.3 openvpn_info
OpenVPN version

openvpn_info

Returns the version information of the OpenVPN infrastructure/library currently used by Bluetit

Return:
DBusResponse.response: OpenVPN version information

Response
OpenVPN version, platform and release information

5.4.4 openvpn_copyright
OpenVPN copyright notice

openvpn_copyright

Returns the copyright notice and information about the OpenVPN infrastructure/library currently used
by Bluetit

Return:
DBusResponse.response: OpenVPN copyright information

Response
OpenVPN copyright information

5.4.5 reset_bluetit_options
Reset all Bluetit internal options

reset_bluetit_options

56

Resets all the Bluetit internal options to their default values

Return:
DBusResponse.response: String description of exit status

Response
Description of exit status

5.4.6 set_options
Sets Bluetit options

set_options

This method is used to send a set of options to the Bluetit daemon. It can be called for each option to
be set or by sending the whole group and relative values in just one call. To see an example on how to
call this method, refer to subsection 4.2.7 callMethodWithReply(). Specifically, this method can accept
all the options currently available in Goldcrest client, both long and short versions. The options sent to
Bluetit with this method must be specified without the dash or double dash. For example the Goldcrest
long option “–air-connect” must be used in this method as “air-connect”, while the short option
“-C” (cipher) must be used as “C”.

Arguments:
std::vector<std::string>: String vector of options and relative values to be set in Bluetit dae-

mon. For a list of valid options and relative value, see Bluetit
Users Manual distributed with AirVPN–SUITE (README.md file) or visit
https://airvpn.org/suite/readme.

Return:
DBusResponse.response: String description of exit status
DBusResponse.items: Dataset associated to the option, when applicable. For more information

about DBusResponse datasets, see 5.6 Response Dataset Identities
Response
Description of exit status

Item 0
Dataset Identity

Item 1. . .n
Dataset items

5.4.7 set_openvpn_profile
Sets the OpenVPN profile (configuration)

set_openvpn_profile

Sends and sets a generic OpenVPN profile (configuration file) to Bluetit to be used for a VPN connection.
This method is used only to connect non-AirVPN servers and it is meant to allow the client to connect to
any and generic OpenVPN server. It can also be used for connecting an AirVPN server in case the client
wants to use its own configuration and does not want to use Bluetit built-in support to AirVPN infras-
tructure. To connect an AirVPN server and taking advantage of the full Bluetit integration and support
to the AirVPN universe, the client is advised to use AirVPN’s specific options as described in Bluetit Users
Manual distributed with AirVPN–SUITE (README.md file) or visit https://airvpn.org/suite/readme/.

Arguments:
std::vector<std::string>: String vector containing the OpenVPN profiles. Each element of the

vector contains just one OpenVPN profile and is represented in its
usual profile (configuration) file format. The OpenVPN profile can
be directly read from its file and directly assigned to the string. At
the current version, the vector can contain just one OpenVPN profile
and must be saved in the first element (0 index position).

57

https://airvpn.org/suite/readme
https://airvpn.org/suite/readme/

Return:
DBusResponse.response: String description of exit status

Response
Description of exit status

5.4.8 start_connection
Starts an OpenVPN connection

start_connection

Starts an OpenVPN connection for the current OpenVPN profile set by the “set_openvpn_profile”
method. It also enables the Network Lock, in case the client has used this option.

Return:
DBusResponse.response: String description of exit status

Response
Description of exit status

5.4.9 stop_connection
Stops a VPN connection

stop_connection

Stops the active VPN connection, either to AirVPN or generic OpenVPN server. It also disables the
Network Lock, in case it has been enabled by the client. This method will however activate Bluetit
persistent Network Lock in case the system administrator has set this option in Bluetit run control file.

Return:
DBusResponse.response: String description of exit status

Response
Description of exit status

5.4.10 pause_connection
Pauses a VPN connection

pause_connection

Pauses the active VPN connection, either to AirVPN or generic OpenVPN server. This method will
however keep the Network Lock active in case it has been enabled by the client during connection.
Moreover, the tunnel may be closed when the connection is paused according to the tunnel persist mode
specified for the active connection or in Bluetit run control file.

Return:
DBusResponse.response: String description of exit status

Response
Description of exit status

58

5.4.11 resume_connection
Resumes a VPN connection

resume_connection

Resumes a previously paused VPN connection.

Return:
DBusResponse.response: String description of exit status

Response
Description of exit status

5.4.12 reconnect_connection
Reconnects a VPN connection

reconnect_connection

Reconnects (restart) the active VPN connection.

Return:
DBusResponse.response: String description of exit status

Response
Description of exit status

5.4.13 session_pause
Pauses the current VPN session

session_pause

Pauses the active and current VPN session, either to AirVPN or generic OpenVPN server. A session is a
connection started and owned by another client or process, including Bluetit ’s connect at boot feature.
The use of this method depends on how Bluetit D-Bus interface and bus have been configured by the
system administrator, that is whether concurrent access to the D-Bus is permitted or not. The default
configuration provided with the AirVPN–SUITE allows just one client connection to Bluetit, that is grants
“exclusive use and ownership” to the first client connecting to Bluetit. This means this method can be
used, by default, only in case there is no other Bluetit client running. This method will however keep
the Network Lock active in case it has been enabled by the client during connection. Moreover, the
tunnel may be closed when the connection is paused according to the tunnel persist mode specified for
the active connection or in Bluetit run control file.

Return:
DBusResponse.response: String description of exit status

Response
Description of exit status

5.4.14 session_resume
Resumes a paused VPN session

session_resume

59

Resumes a previously paused VPN session. A session is a connection started and owned by another client
or process, including Bluetit’s connect at boot feature. The use of this method depends on how Bluetit
D-Bus interface and bus have been configured by the system administrator, that is whether concurrent
access to the D-Bus is permitted or not. The default configuration provided with the AirVPN–SUITE
allows just one client connection to Bluetit, that is grants “exclusive use and ownership” to the first
client connecting to Bluetit. This means this method can be used, by default, only in case there is no
other Bluetit client running. This method will however keep the Network Lock active in case it has been
enabled by the client during connection. Moreover, the tunnel may be closed when the connection is
paused according to the tunnel persist mode specified for the active connection or in Bluetit run control
file.

Return:
DBusResponse.response: String description of exit status

Response
Description of exit status

5.4.15 session_reconnect
Reconnects the VPN session

session_reconnect

Reconnects (restart) the active VPN session. A session is a connection started and owned by another
client or process, including Bluetit’s connect at boot feature. The use of this method depends on how
Bluetit D-Bus interface and bus have been configured by the system administrator, that is whether
concurrent access to the D-Bus is permitted or not. The default configuration provided with the
AirVPN–SUITE allows just one client connection to Bluetit, that is grants “exclusive use and ownership”
to the first client connecting to Bluetit. This means this method can be used, by default, only in case
there is no other Bluetit client running. This method will however keep the Network Lock active in
case it has been enabled by the client during connection. Moreover, the tunnel may be closed when
the connection is paused according to the tunnel persist mode specified for the active connection or in
Bluetit run control file.

Return:
DBusResponse.response: String description of exit status

Response
Description of exit status

5.4.16 connection_stats
Gets VPN statistics

connection_stats

Gets the statistics information of the current and active VPN connection.

Return:
DBusResponse.response: String description of exit status
DBusResponse.item[0]: Connection statistics information

Response
OK: Data successfully retrieved
ERROR: Failed to retrieve data

60

Item 0
STATUS: Current Bluetit status
USER: User name associated to the OpenVPN connection
SERVER_HOST: Server host name
SERVER_PORT: Server port
SERVER_PROTO: Server protocol in use
SERVER_IP: Server IP address
VPN_IP4: VPN exit IPv4 address
VPN_IP6: VPN exit IPv6 address
GATEWAY_IPV4: IPv4 gateway address
GATEWAY_IPV6: IPv6 gateway address
CLIENT_IP: Client IP address
TUN_NAME: Tunnel device name
AIRVPN_SERVER_NAME: AirVPN server name
AIRVPN_SERVER_LOCATION: AirVPN server location
AIRVPN_SERVER_REGION: AirVPN server region
AIRVPN_SERVER_COUNTRY: AirVPN server country
AIRVPN_SERVER_COUNTRY_CODE: AirVPN server ISO country code
AIRVPN_SERVER_CONTINENT: AirVPN server continent
AIRVPN_SERVER_BANDWIDTH: AirVPN server effective current bandwidth in MBit/s
AIRVPN_SERVER_MAX_BANDWIDTH: AirVPN server maximum bandwidth in bytes
AIRVPN_SERVER_USERS: Number of users currently connected to the AirVPN server
AIRVPN_SERVER_LOAD: AirVPN server current load (percent)
AIRVPN_SERVER_WARNING_OPEN: Open warning message for AirVPN server
AIRVPN_SERVER_WARNING_CLOSED: Closed warning message for AirVPN server
AIRVPN_SERVER_TLS_CIPHERS: AirVPN server supported TLS ciphers
AIRVPN_SERVER_TLS_SUITE_CIPHERS: AirVPN server supported TLS suite ciphers
AIRVPN_SERVER_DATA_CIPHERS: AirVPN server supported data ciphers
AIRVPN_SERVER_SCORE: AirVPN server performance score (the higher, the better)
CONNECTION_TIME: Connection time in seconds
RATE_IN: Current input rate in bytes per second
BYTES_IN: Total input bytes count
RATE_OUT: Current output rate in bytes per second
BYTES_OUT: Total output bytes count
MAX_RATE_IN: Maximum recorded input rate in bytes per second
MAX_RATE_OUT: Maximum recorded output rate in bytes per second
TUN_BYTES_IN: Total tunnel input bytes count
TUN_BYTES_OUT: Total tunnel output bytes count
TUN_PACKETS_IN: Total tunnel input packets count
TUN_PACKETS_OUT: Total tunnel output packets count

Note: the AIRVPN_SERVER_* elements are valid only in case Bluetit is connected to an AirVPN server.
In case Bluetit is connected to an AirVPN server, the element AIRVPN_SERVER_NAME always contains the
server real name, whereas it is empty in case of connection to a generic OpenVPN file (that is, by using
an OpenVPN profile or configuration file).

5.4.17 enable_network_lock
Enables the Network Lock

enable_network_lock

Enables the Network Lock by using the firewall infrastructure currently in use, either specified with the
options or Bluetit run control file. In case Bluetit is configured to use a persistent Network Lock, this
method has no effect.

Return:
DBusResponse.response: String description of exit status

61

Response
OK: Network Lock successfully enabled
ERROR: Failed to enable Network Lock (including reason)

5.4.18 disable_network_lock
Disables the Network Lock

disable_network_lock

Disables the Network Lock by using the firewall infrastructure currently in use, either specified with the
options or Bluetit run control file. In case Bluetit is configured to use a persistent Network Lock, this
method has no effect.

Return:
DBusResponse.response: String description of exit status

Response
OK: Network Lock successfully disabled
ERROR: Failed to disable Network Lock (including reason)

5.4.19 network_lock_status
Gets the Network Lock status

network_lock_status

Returns a description of the current Network Lock status

Return:
DBusResponse.response: String description of exit status

Response
Network Lock status description

5.4.20 recover_network
Performs a network recovery

recover_network

Tries to recover the system network and DNS configuration after an abnormal Bluetit termination

Return:
DBusResponse.response: String description of exit status

Response
Description of exit status

5.4.21 airvpn_set_key
Sets AirVPN key name

airvpn_set_key

62

Sets the AirVPN user key name to be used for an AirVPN connection.

Arguments:
std::vector<std::string>: String vector containing just one element (index 0) and representing

the AirVPN user key name.

Return:
DBusResponse.response: String description of exit status

Response
OK: AirVPN user key name successfully set
ERROR: Invalid or empty user key name

5.4.22 airvpn_start_connection
Starts an AirVPN connection

airvpn_start_connection

Starts the connection to the AirVPN server according to the specific AirVPN options and modes set with
“set_options” method.

Return:
DBusResponse.response: String description of exit status

Response
OK: AirVPN connection successfully started
ERROR: Failed to start AirVPN connection (see Bluetit log for more information)

5.4.23 event
Sends and event to the client

event

Sends an event to the client with the associated payload. This method is immediate and does not return
any result. Refer to section 5.5 Bluetit Events for valid Bluetit event types and meaning.

Arguments:
std::vector<std::string>: String vector containing the event type and payload (see below)

Arguments
0: Event type
1: Event payload

5.4.24 log
Sends a log message to the client

log

Sends a log message to the client. This method is immediate and does not return any result.

63

Arguments:
std::vector<std::string>: String vector containing just one element (index 0) and representing

the log message.

5.5 Bluetit Events

event type: std::string
payload: std::string

Figure 5.4: The structure of a Bluetit
event

Bluetit can signal the client special conditions and statuses occurring
while it is running by sending events. Bluetit events are not D-Bus
events. For this specific purpose it is instead used the D-Bus “event”
method which can be therefore conveniently received and processed in
the client’s D-Bus main loop or in a dedicated thread.

These events can optionally have an associated payload representing
the event’s own data, such a message or serialized data.

Figure 5.4 shows the structure of a Bluetit event. It is a simple
std::vector<std::string> object made of two items, the first repre-
senting the event identification name and the second is its associated
payload. The payload is optional and not all the events provide for a payload data. The two elements of
a Bluetit event are both represented by a standard C++ std::string.

Bluetit events are to be considered immediate D-Bus methods and require no further action from the
client, that is, no reply is needed to be sent to Bluetit. Event processing is required to be “on-time” as
Bluetit events are not queued or buffered in any way. This means, in case the client does not get the event
in the time it has been generated and sent, it is lost forever. This is also what happens for every D-Bus
method or message and – for this reason – Bluetit events obey to D-Bus architecture and conventions.

Figure 5.5 shows an example on how to send an “event_connected” event to the client with a payload
representing a descriptive reason of the event. As it can be seen, sending an event is equivalent to calling
a D-Bus method without expecting a reply from the client.

Figure 5.6 shows an example on how to receive and process a Bluetit event as well as an example of
a D-Bus loop using the DBusConnector class. As it can be seen, intercepting an event simply means
to “pop” a D-Bus message from the queue and check whether it is “event” method. In that case the
caller needs to read the arguments of the message (by using the getArgs() method) and then check what
event type has been sent and possibly using the associated payload. The use of getArgs() method to
retrieve data from the DBusMessage structure. As this is a native D-Bus data type, the associated data
need to be retrieved by using the standard convention provided by the D-Bus specifications, therefore a
reference to a char * and referenced by D-Bus data type DBUS_TYPE_STRING.

#include <dbusconnector.hpp>

DBusConnector *dbusConnector;
std::vector<std::string> dbusItems;

....

dbusItems.clear();

dbusItems.push_back("event_connected");
dbusItems.push_back("Successfully connected to the VPN server");

try
{

dbusReply = dbusConnector->callMethod("org.airvpn.client",
"/org/airvpn/client", "event", dbusItems);

}
catch(DBusConnectorException &e)
{

// Error while sending the event
}

Figure 5.5: Example of sending a Bluetit event to the client

64

#include <iostream>
#include <dbusconnector.hpp>

DBusConnector *dbusConnector;
DBusMessage *dbusMessage;
char *event, *payload;
int done = false;

....

while(dbusConnector->readWriteDispatch() && done == false)
{

while((dbusMessage = dbusConnector->popMessage()) != NULL && done == false)
{

if(dbusConnector->isMethod(dbusMessage, "event"))
{

if(dbusConnector->getArgs(dbusMessage, DBUS_TYPE_STRING, &event,
DBUS_TYPE_STRING, &payload, DBUS_TYPE_INVALID))
{

if(strcmp(event, "event_connected") == 0)
{

std::cout << "Connected: " << payload << std:endl;
}

}
}

dbusConnector->unreferenceMessage(dbusMessage);
}

}

Figure 5.6: Example of receiving a Bluetit event from the daemon

To summarize it up, Bluetit event data are sent as standard C++ strings and are received by the client
as D-Bus data types.

5.5.1 event_end_of_session
Terminates the client session

event_end_of_session

Terminates the current client session, logs the AirVPN out and resets all internal settings to their default
values, therefore preparing Bluetit to accept and start a new client session

Arguments:
payload: Empty

5.5.2 event_connected
Connection established with server

event_connected

Connection established with the requested OpenVPN or AirVPN server

Arguments:
payload: Empty

65

5.5.3 event_disconnected
Connection with server terminated

event_disconnected

Connection with the requested OpenVPN or AirVPN server is terminated and closed

Arguments:
payload: Empty

5.5.4 event_pause
Connection with server paused

event_disconnected

Connection with the requested OpenVPN or AirVPN server is paused

Arguments:
payload: Empty

5.5.5 event_resume
Connection with server resumed

event_resume

Connection with OpenVPN or AirVPN server has been successfully resumed after pause

Arguments:
payload: Empty

5.5.6 event_error
Error condition

event_error

An error occurred within Bluetit activity, including connection status

Arguments:
payload: Error description

66

5.6 Response Dataset Identities
Bluetit is mainly driven by sending valid options to it and for which it responds with specific data or
starts a required task. There are special cases in which a DBusMessage returns a DBusResponse object
representing a dataset about a particular set of data and information.

Response

Item 0

Dataset Identifier

key 1: Data 1
key 2: Data 2
key n: Data n

Item n

key 1: Data 1
key 2: Data 2
key n: Data n

Figure 5.7: The structure of a Bluetit
dataset

Response datasets are always triggered by a specific Bluetit op-
tion and they are qualified with their identifier contained in the
DBusRespose’s response attribute. The “versatility” of DBusResponse’s
response allows a double use, that is to pass to the caller the result of
a D-Bus method’s task and to identify a dataset.

Figure 5.7 shows the structure of a possible Bluetit dataset. The
dataset identifier, that is the tag qualifying the whole dataset, is rep-
resented by the response attribute of DBusResponse object, whereas
the associated data are represented by the object’s items. This means
a dataset always has a response identifier and at least one item repre-
senting the associated data.

In order to receive a Bluetit dataset, the client needs to send
the relative options to the daemon and by using the D-Bus method
set_options, described in section 5.4.6.

Figure 5.8 shows how to properly request a Bluetit dataset, in this
case about the AirVPN server Orion. As it can be seen, the client simply
needs to append the proper options to the set_options method’s argument and then to call it. The
Bluetit daemon will then reply with the corresponding dataset about the requested data.

The client is therefore requested to properly get the relative D-Bus reply and to process the dataset
according to its needs. This can be conveniently made in the D-Bus main loop of the client or in dedicated
thread or function. Figure 5.9 shows how to receive and evaluate a Bluetit dataset in response to the
example shown in figure 5.8.

5.6.1 airvpn_server_info
Information about an AirVPN server

airvpn_server_info

#include <iostream>
#include <vector>
#include <dbusconnector.hpp>

DBusConnector *dbusConnector = nullptr;
DBusMessage *dbusReply = nullptr;
std::vector<std::string> dbusItems;

....

dbusItems.clear();

dbusItems.push_back("air-info");
dbusItems.push_back("air-server");
dbusItems.push_back("orion");

dbusReply = dbusConnector->callMethodWithReply("org.airvpn.server",
"/org/airvpn/server", "set_options", dbusItems);

if(dbusReply == nullptr)
{

// Error
}

Figure 5.8: Example of requesting a Bluetit dataset about a specific AirVPN server

67

Complete information about an AirVPN server

Return:
DBusResponse.response: “airvpn_server_info” in case of success; Error description other-

wise
DBusResponse.item[0]: AirVPN server information

Required options and sequence
0: air-info
1: air-server
2: <server full name>

Returned dataset:

Response
airvpn_server_info

#include <iostream>
#include <dbusconnector.hpp>

DBusConnector *dbusConnector;
DBusMessage *dbusReply;
DBusResponse *dbusResponse;
DBusResponse::Item item;
std::string response;

....

dbusResponse = dbusConnector->getResponse(dbusReply);

response = dbusResponse->getResponse();

if(response == "airvpn_server_info" && dbusResponse->rows() > 0)
{

// Process server information

item = dbusResponse->getItem(0);

std::cout << "Server name: " << dbusResponse->getItemValue(item, "name")
<< std::endl;

}

Figure 5.9: Example of processing a Bluetit dataset about a specific AirVPN server

68

Item 0
name: AirVPN server name
country_code: ISO code of AirVPN server country
country: AirVPN server country name
location: AirVPN server geographical location
bandwidth: AirVPN server current bandwidth in MBit/s
effective_bandwidth: AirVPN server effective bandwidth in MBit/s
max_bandwidth: AirVPN server maximum bandwidth in bytes
users: Number of users currently connected to the AirVPN server
supports_ipv4: AirVPN server support for IPv4 (yes, no)
supports_ipv6: AirVPN server support for IPv6 (yes, no)
open_status: Open warning message for AirVPN server
close_status: Close warning message for AirVPN server
load: AirVPN server current load (percent)
tls_ciphers: AirVPN server supported TLS ciphers
tls_suite_ciphers: AirVPN server supported TLS suite ciphers
data_ciphers: AirVPN server supported data ciphers
score: AirVPN server performance score (the higher, the better)
available: AirVPN server availability (yes, no)

5.6.2 airvpn_server_list
List of AirVPN servers

airvpn_server_list

Represents a list of AirVPN servers satisfying the specified pattern. A server is included in the list in
case the pattern is contained in the server name, country ISO code or country description. In case the
pattern is equal to “ALL”, a list of all available AirVPN servers is returned.

Return:
DBusResponse.response: “airvpn_server_list” in case of success; Error description other-

wise
DBusResponse.item[0. . .n]: AirVPN server information. Each entry (server) is defined in its

specific DBusResponse item.

Required options and sequence
0: air-list
1: air-server
2: <pattern|ALL>

Returned dataset:

Response
airvpn_server_info

69

Item 0. . .n
name: AirVPN server name
country_code: ISO code of AirVPN server country
country: AirVPN server country name
location: AirVPN server geographical location
bandwidth: AirVPN server current bandwidth in MBit/s
effective_bandwidth: AirVPN server effective bandwidth in MBit/s
max_bandwidth: AirVPN server maximum bandwidth in bytes
users: Number of users currently connected to the AirVPN server
supports_ipv4: AirVPN server support for IPv4 (yes, no)
supports_ipv6: AirVPN server support for IPv6 (yes, no)
open_status: Open warning message for AirVPN server
close_status: Close warning message for AirVPN server
load: AirVPN server current load (percent)
tls_ciphers: AirVPN server supported TLS ciphers
tls_suite_ciphers: AirVPN server supported TLS suite ciphers
data_ciphers: AirVPN server supported data ciphers
score: AirVPN server performance score (the higher, the better)
available: AirVPN server availability (yes, no)

5.6.3 airvpn_country_info
Information about an AirVPN country

airvpn_country_info

Complete information about an AirVPN country in which servers are available

Return:
DBusResponse.response: “airvpn_country_info” in case of success; Error description other-

wise
DBusResponse.item[0]: Country information

Required options and sequence
0: air-info
1: air-country
2: <country full name|country ISO code>

Returned dataset:

Response
airvpn_country_info

Item 0
country_iso_code: Country ISO code
country_name: Country full name
servers: Number of AirVPN servers available in the country
users: Number of users currently connected to the country
bandwidth: Country current bandwidth in MBit/s
max_bandwidth: Country maximum bandwidth in bytes

5.6.4 airvpn_country_list
List of AirVPN countries

airvpn_country_list

Represents a list of countries where AirVPN servers are available and satisfying the specified pattern.

70

A country is included in the list in case the pattern is contained in its name or ISO code. In case the
pattern is equal to “ALL”, a list of all available countries in the AirVPN’s universe is returned.

Return:
DBusResponse.response: “airvpn_country_list” in case of success; Error description other-

wise
DBusResponse.item[0. . .n]: Country information. Each entry (country) is defined in its specific

DBusResponse item.

Required options and sequence
0: air-list
1: air-country
2: <country full name|country ISO code|ALL>

Returned dataset:

Response
airvpn_country_list

Item 0. . .n
country_iso_code: Country ISO code
country_name: Country full name
servers: Number of AirVPN servers available in the country
users: Number of users currently connected to the country
bandwidth: Country current bandwidth in MBit/s
max_bandwidth: Country maximum bandwidth in bytes

5.6.5 airvpn_key_list
List of keys for AirVPN user

airvpn_key_list

Represents a list of user keys (device profiles) associated to the specified AirVPN user name and password.

Return:
DBusResponse.response: “airvpn_key_list” in case of success; Error description otherwise
DBusResponse.item[0. . .n]: User key information. Each entry (key) is defined in its specific

DBusResponse item.

Required options and sequence
0: air-user
1: <AirVPN user name>
2: air-password
3: <AirVPN user password>
4: air-key-list

Returned dataset:

Response
airvpn_key_list

Item 0. . .n
key: Key name

71

5.6.6 airvpn_save
Configuration data for saving

airvpn_save

This dataset represents a document or configuration to be saved by the client in a local file or used
otherwise. It basically represents two types of documents: an OpenVPN configuration (profile) about an
AirVPN server or country as well as the OpenVPN certificates and keys for a specific user. The document
type is specified in the type element of the returned item.

Return:
DBusResponse.response: “airvpn_save” in case of success; Error description otherwise
DBusResponse.item[0]: Document information

Requesting the OpenVPN configuration for an AirVPN server

Required options and sequence
0: air-user
1: <AirVPN user name>
2: air-password
3: <AirVPN user password>
4: air-save
5: <file name>
6: air-server
7: <AirVPN server name>

Returned dataset:

Response
airvpn_save

Item 0
type: “profile for server”
user: AirVPN user name
name: AirVPN server name
file_name: <provided file name>
content: <OpenVPN configuration>

¨

Requesting the OpenVPN configuration for an AirVPN server and specific AirVPN user key

Required options and sequence
0: air-user
1: <AirVPN user name>
2: air-password
3: <AirVPN user password>
4: air-save
5: <file name>
6: air-server
7: <AirVPN server name>
8: air-key
9: <user key name>

Returned dataset:

Response
airvpn_save

72

Item 0
type: “profile for server”
user: AirVPN user name
name: AirVPN server name
file_name: <provided file name>
content: <OpenVPN configuration>

Requesting the OpenVPN configuration for an AirVPN country
Required options and sequence
0: air-user
1: <AirVPN user name>
2: air-password
3: <AirVPN user password>
4: air-save
5: <file name>
6: air-country
7: <AirVPN country name|AirVPN country ISO code>

Returned dataset:

Response
airvpn_save

Item 0
type: “profile for country”
user: AirVPN user name
name: AirVPN country name
file_name: <provided file name>
content: <OpenVPN configuration>

Requesting the OpenVPN configuration for an AirVPN country and specific AirVPN user
key
Required options and sequence
0: air-user
1: <AirVPN user name>
2: air-password
3: <AirVPN user password>
4: air-save
5: <file name>
6: air-country
7: <AirVPN country name|AirVPN country ISO code>
8: air-key
9: <user key name>

Returned dataset:

Response
airvpn_save

Item 0
type: “profile for country”
user: AirVPN user name
name: AirVPN country name
file_name: <provided file name>
content: <OpenVPN configuration>

73

Requesting the OpenVPN certificates and keys for an AirVPN user
Required options and sequence
0: air-user
1: <AirVPN user name>
2: air-password
3: <AirVPN user password>
4: air-save
5: <file name>
6: air-key
7: <user key name>

Returned dataset:

Response
airvpn_save

Item 0
type: “key”
user: AirVPN user name
name: Key name
file_name: <provided file name>
content: <OpenVPN certificates/keys>

74

	Introduction
	Bluetit System Architecture
	Bluetit Components
	D-Bus Layer
	Options and Command Manager
	OpenVPN3 Service
	AirVPN Manager
	Network Lock and DNS Manager
	Logger

	Bluetit Sessions
	Internal Session
	Synchronous Client Session
	Concurrent Client Session

	Starting a Generic Session
	Starting an OpenVPN Connection

	Starting an AirVPN Session
	AirVPN Options and Settings
	Login to AirVPN Infrastructure
	Starting a Connection to an AirVPN Server
	Starting a Quick Connection
	Starting a Connection to a Specific Server
	Starting a Connection to a Specific Country

	AirVPN Logout

	The DBusConnectorException Class
	Public Methods
	DBusConnectorException()
	.3exDBusConnectorException()
	what()

	The DBusResponse Class
	Public Types
	Item
	ItemIterator
	begin()
	end()

	Iterator
	begin()
	end()

	Public Methods
	DBusResponse()
	.3exDBusResponse()
	clear()
	setResponse()
	getResponse()
	add()
	addToItem()
	getItem()
	rows()
	items()
	getItemValue()
	itemKey()
	itemValue()
	fromString()
	toString()

	The DBusConnector Class
	Character Encoding and Messages
	Public Methods
	DBusConnector()
	.3exDBusConnector()
	readWriteDispatch()
	popMessage()
	isMethod()
	callMethod()
	callMethodWithReply()
	replyToMessage()
	getArgs()
	getVector()
	getInt()
	getResponse()
	unreferenceResponse()
	unreferenceMessage()
	stringToUTF8()
	stringToLocale()

	Bluetit D-Bus Interface
	D-Bus Names
	D-Bus Configuration Files
	Server Configuration
	Client Configuration

	Return Messages
	Public D-Bus Methods
	version
	bluetit_status
	openvpn_info
	openvpn_copyright
	reset_bluetit_options
	set_options
	set_openvpn_profile
	start_connection
	stop_connection
	pause_connection
	resume_connection
	reconnect_connection
	session_pause
	session_resume
	session_reconnect
	connection_stats
	enable_network_lock
	disable_network_lock
	network_lock_status
	recover_network
	airvpn_set_key
	airvpn_start_connection
	event
	log

	Bluetit Events
	event_end_of_session
	event_connected
	event_disconnected
	event_pause
	event_resume
	event_error

	Response Dataset Identities
	airvpn_server_info
	airvpn_server_list
	airvpn_country_info
	airvpn_country_list
	airvpn_key_list
	airvpn_save

